High-accuracy sampling from constrained spaces with the Metropolis-adjusted Preconditioned Langevin Algorithm
- URL: http://arxiv.org/abs/2412.18701v2
- Date: Tue, 31 Dec 2024 00:05:59 GMT
- Title: High-accuracy sampling from constrained spaces with the Metropolis-adjusted Preconditioned Langevin Algorithm
- Authors: Vishwak Srinivasan, Andre Wibisono, Ashia Wilson,
- Abstract summary: We propose a first-order sampling method for approximate sampling from a target distribution whose support is a proper convex subset of $mathbbRd$.
Our proposed method is the result of applying a Metropolis-Hastings filter to the Markov chain formed by a single step of the preconditioned Langevin algorithm.
- Score: 12.405427902037971
- License:
- Abstract: In this work, we propose a first-order sampling method called the Metropolis-adjusted Preconditioned Langevin Algorithm for approximate sampling from a target distribution whose support is a proper convex subset of $\mathbb{R}^{d}$. Our proposed method is the result of applying a Metropolis-Hastings filter to the Markov chain formed by a single step of the preconditioned Langevin algorithm with a metric $\mathscr{G}$, and is motivated by the natural gradient descent algorithm for optimisation. We derive non-asymptotic upper bounds for the mixing time of this method for sampling from target distributions whose potentials are bounded relative to $\mathscr{G}$, and for exponential distributions restricted to the support. Our analysis suggests that if $\mathscr{G}$ satisfies stronger notions of self-concordance introduced in Kook and Vempala (2024), then these mixing time upper bounds have a strictly better dependence on the dimension than when is merely self-concordant. We also provide numerical experiments that demonstrates the practicality of our proposed method. Our method is a high-accuracy sampler due to the polylogarithmic dependence on the error tolerance in our mixing time upper bounds.
Related papers
- Faster Sampling via Stochastic Gradient Proximal Sampler [28.422547264326468]
Proximal samplers (SPS) for sampling from non-log-concave distributions are studied.
We show that the convergence to the target distribution can be guaranteed as long as the algorithm trajectory is bounded.
We provide two implementable variants based on Langevin dynamics (SGLD) and Langevin-MALA, giving rise to SPS-SGLD and SPS-MALA.
arXiv Detail & Related papers (2024-05-27T00:53:18Z) - Fast sampling from constrained spaces using the Metropolis-adjusted Mirror Langevin algorithm [12.405427902037971]
We propose a new method for approximate sampling from distributions whose support is a compact and convex set.
This algorithm adds an accept-reject filter to the Markov chain induced by a single step of the Mirror Langevin.
We obtain an exponentially better dependence on the error tolerance for approximate constrained sampling.
arXiv Detail & Related papers (2023-12-14T11:11:58Z) - Symmetric Mean-field Langevin Dynamics for Distributional Minimax
Problems [78.96969465641024]
We extend mean-field Langevin dynamics to minimax optimization over probability distributions for the first time with symmetric and provably convergent updates.
We also study time and particle discretization regimes and prove a new uniform-in-time propagation of chaos result.
arXiv Detail & Related papers (2023-12-02T13:01:29Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - Min-Max Optimization Made Simple: Approximating the Proximal Point
Method via Contraction Maps [77.8999425439444]
We present a first-order method that admits near-optimal convergence rates for convex/concave min-max problems.
Our work is based on the fact that the update rule of the Proximal Point method can be approximated up to accuracy.
arXiv Detail & Related papers (2023-01-10T12:18:47Z) - Resolving the Mixing Time of the Langevin Algorithm to its Stationary
Distribution for Log-Concave Sampling [34.66940399825547]
This paper characterizes the mixing time of the Langevin Algorithm to its stationary distribution.
We introduce a technique from the differential privacy literature to the sampling literature.
arXiv Detail & Related papers (2022-10-16T05:11:16Z) - Utilising the CLT Structure in Stochastic Gradient based Sampling :
Improved Analysis and Faster Algorithms [14.174806471635403]
We consider approximations of sampling algorithms, such as Gradient Langevin Dynamics (SGLD) and the Random Batch Method (RBM) for Interacting Particle Dynamcs (IPD)
We observe that the noise introduced by the approximation is nearly Gaussian due to the Central Limit Theorem (CLT) while the driving Brownian motion is exactly Gaussian.
We harness this structure to absorb the approximation error inside the diffusion process, and obtain improved convergence guarantees for these algorithms.
arXiv Detail & Related papers (2022-06-08T10:17:40Z) - Convergence of the Riemannian Langevin Algorithm [10.279748604797911]
We study the problem of sampling from a distribution with density $nu$ with respect to the natural measure on a manifold with metric $g$.
A special case of our approach is sampling isoperimetric densities restricted to polytopes defined by the logarithmic barrier.
arXiv Detail & Related papers (2022-04-22T16:56:00Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
This work provides a general framework for the non-asymotic analysis of sampling error in 2-Wasserstein distance.
Our theoretical analysis is further validated by numerical experiments.
arXiv Detail & Related papers (2021-09-08T18:00:05Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Generative Modeling with Denoising Auto-Encoders and Langevin Sampling [88.83704353627554]
We show that both DAE and DSM provide estimates of the score of the smoothed population density.
We then apply our results to the homotopy method of arXiv:1907.05600 and provide theoretical justification for its empirical success.
arXiv Detail & Related papers (2020-01-31T23:50:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.