論文の概要: SurvAttack: Black-Box Attack On Survival Models through Ontology-Informed EHR Perturbation
- arxiv url: http://arxiv.org/abs/2412.18706v1
- Date: Tue, 24 Dec 2024 23:35:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:29:09.738220
- Title: SurvAttack: Black-Box Attack On Survival Models through Ontology-Informed EHR Perturbation
- Title(参考訳): SurvAttack:オントロジーインフォームド EHR 摂動による生存モデルに対するブラックボックス攻撃
- Authors: Mohsen Nayebi Kerdabadi, Arya Hadizadeh Moghaddam, Bin Liu, Mei Liu, Zijun Yao,
- Abstract要約: 生存分析モデルのための新しいブラックボックス攻撃フレームワークであるSurvAttackを紹介する。
本研究は,患者の医療史を通じて,様々な相手行動を伴う医療コードを操作するアルゴリズムを特に開発する。
提案アルゴリズムは,サバイバルモデルを攻撃するための効率的なSA特異的戦略として用いられる。
- 参考スコア(独自算出の注目度): 9.500873129276531
- License:
- Abstract: Survival analysis (SA) models have been widely studied in mining electronic health records (EHRs), particularly in forecasting the risk of critical conditions for prioritizing high-risk patients. However, their vulnerability to adversarial attacks is much less explored in the literature. Developing black-box perturbation algorithms and evaluating their impact on state-of-the-art survival models brings two benefits to medical applications. First, it can effectively evaluate the robustness of models in pre-deployment testing. Also, exploring how subtle perturbations would result in significantly different outcomes can provide counterfactual insights into the clinical interpretation of model prediction. In this work, we introduce SurvAttack, a novel black-box adversarial attack framework leveraging subtle clinically compatible, and semantically consistent perturbations on longitudinal EHRs to degrade survival models' predictive performance. We specifically develop a greedy algorithm to manipulate medical codes with various adversarial actions throughout a patient's medical history. Then, these adversarial actions are prioritized using a composite scoring strategy based on multi-aspect perturbation quality, including saliency, perturbation stealthiness, and clinical meaningfulness. The proposed adversarial EHR perturbation algorithm is then used in an efficient SA-specific strategy to attack a survival model when estimating the temporal ranking of survival urgency for patients. To demonstrate the significance of our work, we conduct extensive experiments, including baseline comparisons, explainability analysis, and case studies. The experimental results affirm our research's effectiveness in illustrating the vulnerabilities of patient survival models, model interpretation, and ultimately contributing to healthcare quality.
- Abstract(参考訳): 生存分析(SA)モデルは電子健康記録(EHR)のマイニングにおいて広く研究されており、特に高リスク患者を優先順位付けするための臨界状態のリスクを予測している。
しかし、敵の攻撃に対するその脆弱性は、文献ではあまり調査されていない。
ブラックボックス摂動アルゴリズムの開発と、最先端の生存モデルへの影響評価は、医療応用に2つの利点をもたらす。
まず、事前デプロイテストにおけるモデルの堅牢性を効果的に評価できる。
また、微妙な摂動がいかにして大きく異なる結果をもたらすかを調べることで、モデル予測の臨床的解釈に反実的な洞察を与えることができる。
本研究は,SurvAttackについて紹介する。SurvAttackは,臨床的に微妙に互換性があり,経時的EHRに対する意味論的に一貫した摂動を利用して,生存モデルの予測性能を低下させる新しいブラックボックス敵攻撃フレームワークである。
本研究は,患者の医療史を通じて,様々な相手行動を伴う医療コードを操作するための欲求的アルゴリズムを特に開発する。
そして、これらの逆行行動は、唾液度、摂動ステルス性、臨床的意義を含む多視点摂動品質に基づく複合スコアリング戦略を用いて優先順位付けされる。
提案アルゴリズムは, 患者に対する生存緊急の時間的ランクを推定する際に, 生存モデルを攻撃するための効率的なSA特異的戦略として用いられる。
本研究の意義を明らかにするため,ベースライン比較,説明可能性分析,ケーススタディなど,幅広い実験を行った。
実験の結果,患者生存モデルの脆弱性を解明し,モデル解釈を行い,最終的に医療の質に寄与するという,我々の研究の有効性が確認された。
関連論文リスト
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
現状の生存モデルと解釈可能かつ競合する新しい生存分析パイプラインを提案する。
我々のパイプラインは最先端のパフォーマンスを達成し、心不全のリスク要因に関する興味深い新しい洞察を提供する。
論文 参考訳(メタデータ) (2023-10-24T02:56:05Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Contrastive Learning of Temporal Distinctiveness for Survival Analysis
in Electronic Health Records [10.192973297290136]
本稿では,オントロジーを意識したテンポラリティに基づくコントラシブ・サバイバル(OTCSurv)分析フレームワークを提案する。
OTCSurvは、検閲されたデータと観察されたデータの両方から生存期間を使い、時間的特異性を定義する。
急性腎障害(AKI)を発症する危険のある入院患者のリスクを予測するために,大規模なEHRデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2023-08-24T22:36:22Z) - Hypergraph Convolutional Networks for Fine-grained ICU Patient
Similarity Analysis and Risk Prediction [15.06049250330114]
集中治療ユニット(ICU、Intensive Care Unit)は、重篤な患者を認め、継続的な監視と治療を提供する病院の最も重要な部分の1つである。
臨床意思決定における医療従事者を支援するために,様々な患者結果予測手法が試みられている。
論文 参考訳(メタデータ) (2023-08-24T05:26:56Z) - Neurological Prognostication of Post-Cardiac-Arrest Coma Patients Using
EEG Data: A Dynamic Survival Analysis Framework with Competing Risks [4.487368901635044]
脳波データを用いた心停止後コマトース患者の神経学的予後の枠組みを提案する。
我々のフレームワークは、患者レベルの累積頻度関数を推定する形で競合するリスクをサポートする動的生存分析モデルを使用する。
我々は,922人の実際のデータセット上で競合するリスクをサポートする3つの既存動的生存分析モデルをベンチマークすることで,我々の枠組みを実証する。
論文 参考訳(メタデータ) (2023-08-17T03:46:23Z) - Forecasting Patient Flows with Pandemic Induced Concept Drift using
Explainable Machine Learning [0.0]
本研究では,患者フローの予測モデルを改善する新しい準リアルタイム変数群について検討した。
新型コロナウイルス(COVID-19)のアラートレベル(Alert Level)機能は、Googleの検索語や歩行者のトラフィックとともに、一般的な予測を生成するのに効果的だった。
論文 参考訳(メタデータ) (2022-11-01T20:42:26Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - WRSE -- a non-parametric weighted-resolution ensemble for predicting
individual survival distributions in the ICU [0.251657752676152]
集中治療室(ICU)における死亡リスクの動的評価は、患者を階層化し、治療効果を知らせたり、早期警戒システムの一部として機能したりすることができる。
現状の確率モデルと競合する結果を示すとともに,2~9倍のトレーニング時間を大幅に短縮する。
論文 参考訳(メタデータ) (2020-11-02T10:13:59Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
ニューラル常微分方程式を多状態生存モデル推定のためのフレキシブルで一般的な方法として用いる。
また,本モデルでは,サバイバルデータセット上での最先端性能を示すとともに,マルチステート環境での有効性を示す。
論文 参考訳(メタデータ) (2020-06-08T19:24:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。