論文の概要: CAG: Chunked Augmented Generation for Google Chrome's Built-in Gemini Nano
- arxiv url: http://arxiv.org/abs/2412.18708v1
- Date: Tue, 24 Dec 2024 23:49:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:27:00.433819
- Title: CAG: Chunked Augmented Generation for Google Chrome's Built-in Gemini Nano
- Title(参考訳): Google Chromeに内蔵されたGemini Nanoが登場!(動画あり)
- Authors: Vivek Vellaiyappan Surulimuthu, Aditya Karnam Gururaj Rao,
- Abstract要約: Chunked Augmented Generation (CAG)は、Google Chromeに組み込まれたGemini Nanoモデルのコンテキストウィンドウ制限を克服するために設計されたアーキテクチャである。
この実装は,大規模なドキュメントやデータセットを直接Chrome内で処理する上で,特に有効であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We present Chunked Augmented Generation (CAG), an architecture specifically designed to overcome the context window limitations of Google Chrome's built-in Gemini Nano model. While Chrome's integration of Gemini Nano represents a significant advancement in bringing AI capabilities directly to the browser, its restricted context window poses challenges for processing large inputs. CAG addresses this limitation through intelligent input chunking and processing strategies, enabling efficient handling of extensive content while maintaining the model's performance within browser constraints. Our implementation demonstrates particular efficacy in processing large documents and datasets directly within Chrome, making sophisticated AI capabilities accessible through the browser without external API dependencies. Get started now at https://github.com/vivekVells/cag-js.
- Abstract(参考訳): 我々は、Google Chromeに組み込まれたGemini Nanoモデルのコンテキストウィンドウ制限を克服するために設計されたアーキテクチャであるChunked Augmented Generation (CAG)を紹介する。
ChromeのGemini Nanoの統合は、AI機能をブラウザに直接導入する上で大きな進歩を示しているが、その制限されたコンテキストウィンドウは、大きな入力を処理する上での課題を提起している。
CAGはインテリジェントな入力チャンキングと処理戦略を通じてこの制限に対処し、ブラウザの制約内でモデルのパフォーマンスを維持しながら、広範なコンテンツの効率的な処理を可能にする。
当社の実装では,大規模なドキュメントやデータセットを直接Chrome内で処理する上で,特に有効性を示している。
https://github.com/vivekVells/cag-js.comから始めよう。
関連論文リスト
- Steward: Natural Language Web Automation [19.301371856154965]
大規模言語モデル(LLM)は、AIアシスタントの基盤として機能する優れた能力を示している。
我々は、低コストでスケーラブルでエンドツーエンドなWebインタラクション自動化ソリューションとして機能するように設計された、新しいLLMベースのWeb自動化ツールであるStewardを紹介します。
本稿では,状態表現,アクションシーケンス選択,システム応答性,タスク完了の検出,キャッシュ実装など,さまざまな設計と実装の課題について論じる。
論文 参考訳(メタデータ) (2024-09-23T18:06:32Z) - OpenOmni: A Collaborative Open Source Tool for Building Future-Ready Multimodal Conversational Agents [11.928422245125985]
Open Omniはオープンソースのエンドツーエンドパイプラインベンチマークツールである。
音声テキスト、感情検出、検索拡張生成、大規模言語モデルなどの高度な技術を統合している。
ローカルとクラウドのデプロイメントをサポートし、データのプライバシを確保し、レイテンシと精度のベンチマークをサポートする。
論文 参考訳(メタデータ) (2024-08-06T09:02:53Z) - Using the Abstract Computer Architecture Description Language to Model
AI Hardware Accelerators [77.89070422157178]
AI統合製品の製造者は、製品のパフォーマンス要件に適合するアクセラレータを選択するという、重大な課題に直面します。
抽象コンピュータアーキテクチャ記述言語(ACADL)は、コンピュータアーキテクチャブロック図の簡潔な形式化である。
本稿では,AIハードウェアアクセラレーションのモデル化にACADLを用いること,DNNのマッピングにACADL記述を使用し,タイミングシミュレーションのセマンティクスを解説し,性能評価結果の収集を行う。
論文 参考訳(メタデータ) (2024-01-30T19:27:16Z) - Bi-directional Adapter for Multi-modal Tracking [67.01179868400229]
汎用の双方向アダプタを用いたマルチモーダル視覚プロンプト追跡モデルを提案する。
我々は、モーダリティ固有の情報をあるモーダリティから別のモーダリティへ転送するための、シンプルだが効果的なライト・フィーチャー・アダプタを開発した。
本モデルでは,完全微調整法と素早い学習法の両方と比較して,追跡性能が優れている。
論文 参考訳(メタデータ) (2023-12-17T05:27:31Z) - Empowering In-Browser Deep Learning Inference on Edge Devices with Just-in-Time Kernel Optimizations [30.477092899633785]
本稿では,先駆的なブラウザ推論システム nnJIT について述べる。
nnJITは、エッジデバイス向けに最適化されたコンピューティングカーネルのジャスト・イン・タイム(JIT)自動生成を可能にする。
その結果、nJITは既存のベースラインと比較して30秒で最大8.2倍高速に達成できることがわかった。
論文 参考訳(メタデータ) (2023-09-16T12:29:25Z) - MuRAG: Multimodal Retrieval-Augmented Generator for Open Question
Answering over Images and Text [58.655375327681774]
我々は,Multimodal Retrieval-Augmented Transformer (MuRAG)を提案する。
MuRAGは外部の非パラメトリックマルチモーダルメモリにアクセスして言語生成を増強する。
以上の結果から, MuRAGは最先端の精度を達成し, 既存のモデルよりも10~20%精度が高いことがわかった。
論文 参考訳(メタデータ) (2022-10-06T13:58:03Z) - CoCoPIE XGen: A Full-Stack AI-Oriented Optimizing Framework [40.53707613126131]
クラウド上のデータセンタからエッジあるいはエンドデバイスへと、AI能力のデリバリをシフトする需要が高まっている。
しかし、このシフトは、DNNコンピューティング要求とエッジまたはエンドデバイスにおけるコンピューティングパワーの間の大きなギャップによって妨げられている。
本稿では、このギャップを埋めるために設計されたDNNの最適化フレームワークであるXGenの設計について述べる。
論文 参考訳(メタデータ) (2022-06-21T14:10:22Z) - SOL: Reducing the Maintenance Overhead for Integrating Hardware Support
into AI Frameworks [0.7614628596146599]
Theano、Caffe、Chainer、CNTK、MxNet、PyTorch、DL4JといったAIフレームワークは、ハイレベルなスクリプティングAPIを提供する。
主流でないCPUやGPU、アクセラレータベンダは、これらのフレームワークでハードウェアをサポートするために、高い努力を払わなければならない。
NEC Laboratories Europeは、すでに数年前にSOL AI Optimizationプロジェクトの開発を開始した。
論文 参考訳(メタデータ) (2022-05-19T08:40:46Z) - MixFormer: Mixing Features across Windows and Dimensions [68.86393312123168]
ローカルウインドウの自己注意は視覚タスクにおいて顕著に機能するが、限定的な受容野と弱いモデリング能力の問題に悩まされている。
これは主に、オーバーラップされていないウィンドウ内で自己注意を行い、チャネル次元に重みを共有するためである。
局所窓の自己アテンションと深度ワイドの畳み込みを並列設計で組み合わせ, クロスウィンドウ接続をモデル化し, 受容場を拡大する。
論文 参考訳(メタデータ) (2022-04-06T03:13:50Z) - Fine-Grained Scene Graph Generation with Data Transfer [127.17675443137064]
シーングラフ生成(SGG)は、画像中の三つ子(オブジェクト、述語、オブジェクト)を抽出することを目的としている。
最近の研究は、SGGを着実に進歩させ、高レベルの視覚と言語理解に有用なツールを提供している。
そこで本研究では,プレー・アンド・プラグ方式で適用可能で,約1,807の述語クラスを持つ大規模SGGに拡張可能な,内部・外部データ転送(IETrans)手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T12:26:56Z) - AutoGAN-Distiller: Searching to Compress Generative Adversarial Networks [98.71508718214935]
既存のGAN圧縮アルゴリズムは、特定のGANアーキテクチャの処理と損失に限られている。
近年の深部圧縮におけるAutoMLの成功に触発されて,GAN圧縮にAutoMLを導入し,AutoGAN-Distillerフレームワークを開発した。
我々はAGDを画像翻訳と超解像の2つの代表的なGANタスクで評価する。
論文 参考訳(メタデータ) (2020-06-15T07:56:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。