論文の概要: Predicting Time Series of Networked Dynamical Systems without Knowing Topology
- arxiv url: http://arxiv.org/abs/2412.18734v1
- Date: Wed, 25 Dec 2024 01:39:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:28:42.193339
- Title: Predicting Time Series of Networked Dynamical Systems without Knowing Topology
- Title(参考訳): トポロジーを知らないネットワーク動的システムの時系列予測
- Authors: Yanna Ding, Zijie Huang, Malik Magdon-Ismail, Jianxi Gao,
- Abstract要約: 本稿では,観測時系列データから直接ネットワークダイナミクスを学習するための新しいフレームワークを提案する。
提案手法では,注意機構を備えた連続グラフニューラルネットワークを用いて潜在トポロジを構築する。
- 参考スコア(独自算出の注目度): 6.116061389927321
- License:
- Abstract: Many real-world complex systems, such as epidemic spreading networks and ecosystems, can be modeled as networked dynamical systems that produce multivariate time series. Learning the intrinsic dynamics from observational data is pivotal for forecasting system behaviors and making informed decisions. However, existing methods for modeling networked time series often assume known topologies, whereas real-world networks are typically incomplete or inaccurate, with missing or spurious links that hinder precise predictions. Moreover, while networked time series often originate from diverse topologies, the ability of models to generalize across topologies has not been systematically evaluated. To address these gaps, we propose a novel framework for learning network dynamics directly from observed time-series data, when prior knowledge of graph topology or governing dynamical equations is absent. Our approach leverages continuous graph neural networks with an attention mechanism to construct a latent topology, enabling accurate reconstruction of future trajectories for network states. Extensive experiments on real and synthetic networks demonstrate that our model not only captures dynamics effectively without topology knowledge but also generalizes to unseen time series originating from diverse topologies.
- Abstract(参考訳): 拡散ネットワークや生態系のような現実世界の複雑なシステムの多くは、多変量時系列を生成するネットワーク化された動的システムとしてモデル化することができる。
観測データから本質的なダイナミクスを学習することは、システムの振る舞いを予測し、情報的決定を行う上で重要である。
しかし、ネットワーク化された時系列をモデル化する既存の方法はよく既知のトポロジを仮定するが、現実のネットワークは通常不完全または不正確なものであり、正確な予測を妨げている。
さらに、ネットワーク化された時系列は様々なトポロジに由来することが多いが、トポロジをまたいでモデルを一般化する能力は体系的に評価されていない。
これらのギャップに対処するために,グラフトポロジや動的方程式の事前知識がない場合に,観測時系列データから直接ネットワークダイナミクスを学習するための新しいフレームワークを提案する。
提案手法では,連続グラフニューラルネットワークに注意機構を付加して潜在トポロジを構築し,ネットワーク状態に対する将来の軌道の正確な再構築を可能にする。
実および合成ネットワークに関する大規模な実験により、我々のモデルはトポロジの知識を使わずに動的を効果的に捉えるだけでなく、多様なトポロジに由来する目に見えない時系列に一般化することを示した。
関連論文リスト
- How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Do We Need an Encoder-Decoder to Model Dynamical Systems on Networks? [18.92828441607381]
埋め込みは観察によく適合するが、同時に誤った動的挙動を持つモデルを誘導することを示す。
2つの加法的ベクトル場成分をパラメトリした単純な埋め込み自由な代替法を提案する。
論文 参考訳(メタデータ) (2023-05-20T12:41:47Z) - Autoregressive GNN-ODE GRU Model for Network Dynamics [7.272158647379444]
本稿では,AGOG(Autoregressive GNN-ODE GRU Model)を提案する。
我々のモデルは複雑なシステムの連続的動的過程を正確に捉え、最小限の誤差でノード状態の予測を行うことができる。
論文 参考訳(メタデータ) (2022-11-19T05:43:10Z) - Bayesian Inference of Stochastic Dynamical Networks [0.0]
本稿では,ネットワークトポロジと内部ダイナミクスを学習するための新しい手法を提案する。
グループスパースベイズ学習(GSBL)、BINGO、カーネルベースの方法、dynGENIE3、genIE3、ARNIと比較される。
本手法は,グループスパースベイズ学習 (GSBL), BINGO, kernel-based method, dynGENIE3, GENIE3, ARNI と比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-06-02T03:22:34Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z) - Estimating Linear Dynamical Networks of Cyclostationary Processes [0.0]
本稿では,サイクロ定常プロセスに励起されたネットワークにおけるトポロジ学習のための新しいアルゴリズムを提案する。
以前の作業とは異なり、このフレームワークは複雑な依存性を持つ線形動的システムに適用される。
本論文の第2部では,ネットワークのサブセットが観測されていない場合の双方向ラジアルネットワークにおける一貫したトポロジ学習条件を解析する。
論文 参考訳(メタデータ) (2020-09-26T18:54:50Z) - Continuous-in-Depth Neural Networks [107.47887213490134]
まず最初に、このリッチな意味では、ResNetsは意味のある動的でないことを示します。
次に、ニューラルネットワークモデルが連続力学系を表現することを実証する。
ResNetアーキテクチャの詳細な一般化としてContinuousNetを紹介します。
論文 参考訳(メタデータ) (2020-08-05T22:54:09Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。