論文の概要: Implicit factorized transformer approach to fast prediction of turbulent channel flows
- arxiv url: http://arxiv.org/abs/2412.18840v1
- Date: Wed, 25 Dec 2024 09:05:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:25:20.905227
- Title: Implicit factorized transformer approach to fast prediction of turbulent channel flows
- Title(参考訳): 入射分解型変圧器による乱流流の高速予測
- Authors: Huiyu Yang, Yunpeng Wang, Jianchun Wang,
- Abstract要約: 本稿では,従来の連鎖因数分解処理を並列因数分解処理に置き換える改良型暗黙因数分解変換器 (IFactFormer-m) モデルを提案する。
IFactFormer-mモデルは乱流流の長期予測に成功している。
- 参考スコア(独自算出の注目度): 6.70175842351963
- License:
- Abstract: Transformer neural operators have recently become an effective approach for surrogate modeling of nonlinear systems governed by partial differential equations (PDEs). In this paper, we introduce a modified implicit factorized transformer (IFactFormer-m) model which replaces the original chained factorized attention with parallel factorized attention. The IFactFormer-m model successfully performs long-term predictions for turbulent channel flow, whereas the original IFactFormer (IFactFormer-o), Fourier neural operator (FNO), and implicit Fourier neural operator (IFNO) exhibit a poor performance. Turbulent channel flows are simulated by direct numerical simulation using fine grids at friction Reynolds numbers $\text{Re}_{\tau}\approx 180,395,590$, and filtered to coarse grids for training neural operator. The neural operator takes the current flow field as input and predicts the flow field at the next time step, and long-term prediction is achieved in the posterior through an autoregressive approach. The prediction results show that IFactFormer-m, compared to other neural operators and the traditional large eddy simulation (LES) methods including dynamic Smagorinsky model (DSM) and the wall-adapted local eddy-viscosity (WALE) model, reduces prediction errors in the short term, and achieves stable and accurate long-term prediction of various statistical properties and flow structures, including the energy spectrum, mean streamwise velocity, root mean square (rms) values of fluctuating velocities, Reynolds shear stress, and spatial structures of instantaneous velocity. Moreover, the trained IFactFormer-m is much faster than traditional LES methods.
- Abstract(参考訳): 変圧器ニューラル演算子は近年、偏微分方程式(PDE)によって支配される非線形系の代理モデリングに有効なアプローチとなっている。
本稿では,従来の連鎖因数分解処理を並列因数分解処理に置き換える改良型暗黙因数分解変換器 (IFactFormer-m) モデルを提案する。
IFactFormer-mモデルは乱流流の長期予測に成功し,元のIFactFormer(IFactFormer-o)、フーリエニューラル演算子(FNO)、暗黙的なフーリエニューラル演算子(IFNO)は低性能を示す。
乱流チャネル流は、摩擦レイノルズ数$\text{Re}_{\tau}\approx 180,395,590$の微細格子を用いて直接数値シミュレーションによりシミュレーションされ、ニューラル作用素のトレーニングのために粗い格子にフィルタされる。
ニューラル演算子は、電流流れ場を入力として次のタイミングで流れ場を予測し、自己回帰的アプローチにより後部で長期予測を行う。
その結果、IFactFormer-mは、他の神経演算子と比較して、動的スマゴリンスキーモデル(DSM)や壁適応局所渦視率(WALE)モデルを含む従来の大規模渦シミュレーション(LES)手法を用いて、短時間で予測誤差を低減し、エネルギースペクトル、平均流速、根平均二乗(体)値、変動速度、レイノルズせん断応力、即時速度の空間構造など、様々な統計特性および流れ構造の安定かつ正確な長期予測を実現することを示した。
さらに、トレーニングされたIFactFormer-mは従来のLESメソッドよりもはるかに高速である。
関連論文リスト
- Integrating Neural Operators with Diffusion Models Improves Spectral Representation in Turbulence Modeling [3.9134883314626876]
我々は、乱流の代理モデリングにおいて、ニューラル演算子のスペクトル制限に対処するために、拡散モデルとニューラル演算子を統合する。
我々のアプローチは、多様なデータセット上で異なるニューラル演算子に対して検証されている。
この研究は、生成モデルとニューラル演算子を組み合わせるための新しいパラダイムを確立し、乱流系の代理モデリングを前進させる。
論文 参考訳(メタデータ) (2024-09-13T02:07:20Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
機械学習を用いて乱流シミュレーションのための低次/サロゲートモデルを開発することを目的としている。
異なるモデル構造が解析され、U-NET構造は標準FNOよりも精度と安定性が良い。
論文 参考訳(メタデータ) (2023-07-25T14:09:53Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - Forecasting subcritical cylinder wakes with Fourier Neural Operators [58.68996255635669]
実験によって測定された速度場の時間的変化を予測するために,最先端の演算子学習手法を適用した。
その結果、FNOはレイノルズ数の範囲で実験速度場の進化を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2023-01-19T20:04:36Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
最適輸送流(MIOFlow)を補間するマニフォールド補間法を提案する。
MIOFlowは、散発的なタイムポイントで撮影された静的スナップショットサンプルから、連続的な人口動態を学習する。
本手法は, 胚体分化および急性骨髄性白血病の治療から得られたscRNA-seqデータとともに, 分岐とマージによるシミュレーションデータについて検討した。
論文 参考訳(メタデータ) (2022-06-29T22:19:03Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Predicting the temporal dynamics of turbulent channels through deep
learning [0.0]
最小乱流チャネル流の時間的進化を再現するニューラルネットワークの能力を評価することを目的としている。
長期記憶(LSTM)ネットワークとクープマンベースのフレームワーク(KNF)は、最小チャネルフローモードの時間ダイナミクスを予測するために訓練される。
論文 参考訳(メタデータ) (2022-03-02T09:31:03Z) - Emulating Spatio-Temporal Realizations of Three-Dimensional Isotropic
Turbulence via Deep Sequence Learning Models [24.025975236316842]
最先端のディープラーニング技術を用いて3次元乱流をモデル化するために,データ駆動方式を用いる。
モデルの精度は、統計および物理に基づくメトリクスを用いて評価される。
論文 参考訳(メタデータ) (2021-12-07T03:33:39Z) - Multi-fidelity Generative Deep Learning Turbulent Flows [0.0]
計算流体力学では、精度と計算コストの間に必然的なトレードオフがある。
本研究では,高忠実度乱流場の代理モデルとして,新しい多自由度深部生成モデルを提案する。
結果として生じるサロゲートは、物理的に正確な乱流実現を、高忠実度シミュレーションのそれよりも低い計算コストで生成することができる。
論文 参考訳(メタデータ) (2020-06-08T16:37:48Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。