論文の概要: WaveDiffUR: A diffusion SDE-based solver for ultra magnification super-resolution in remote sensing images
- arxiv url: http://arxiv.org/abs/2412.18996v1
- Date: Wed, 25 Dec 2024 22:26:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:27:28.116584
- Title: WaveDiffUR: A diffusion SDE-based solver for ultra magnification super-resolution in remote sensing images
- Title(参考訳): WaveDiffUR:リモートセンシング画像における超高分解能超解像のための拡散SDEに基づく解法
- Authors: Yue Shi, Liangxiu Han, Darren Dancy, Lianghao Han,
- Abstract要約: 本稿では,ウェーブレット領域拡散URソルバであるWaveDiffURを導入し,UR過程を条件付きウェーブレット成分に対処するシーケンシャルサブプロセスに分解する。
WaveDiffURは、訓練済みSRモデルをプラグ・アンド・プレイモジュールとして組み込むことで、低周波の詳細(グローバル整合性を保証する)と高周波成分(局所忠実性を高める)を反復的に再構築する。
固定境界条件の限界を極端に拡大するために,クロススケールピラミッド (CSP) フレームワークを導入する。
- 参考スコア(独自算出の注目度): 2.7830219396433704
- License:
- Abstract: Deep neural networks have recently achieved significant advancements in remote sensing superresolu-tion (SR). However, most existing methods are limited to low magnification rates (e.g., 2 or 4) due to the escalating ill-posedness at higher magnification scales. To tackle this challenge, we redefine high-magnification SR as the ultra-resolution (UR) problem, reframing it as solving a conditional diffusion stochastic differential equation (SDE). In this context, we propose WaveDiffUR, a novel wavelet-domain diffusion UR solver that decomposes the UR process into sequential sub-processes addressing conditional wavelet components. WaveDiffUR iteratively reconstructs low-frequency wavelet details (ensuring global consistency) and high-frequency components (enhancing local fidelity) by incorporating pre-trained SR models as plug-and-play modules. This modularity mitigates the ill-posedness of the SDE and ensures scalability across diverse applications. To address limitations in fixed boundary conditions at extreme magnifications, we introduce the cross-scale pyramid (CSP) constraint, a dynamic and adaptive framework that guides WaveDiffUR in generating fine-grained wavelet details, ensuring consistent and high-fidelity outputs even at extreme magnification rates.
- Abstract(参考訳): 深部ニューラルネットワークは、最近、リモートセンシング超解離反応(SR)において大きな進歩を遂げた。
しかし、既存のほとんどの手法は、高い倍率スケールでの浮腫れがエスカレートするため、低い倍率(例えば、2または4)に制限されている。
この課題に対処するため、超分解能(UR)問題として高磁化SRを再定義し、これを条件付き拡散確率微分方程式(SDE)として解いた。
そこで本研究では,WWDiffURを提案する。WWDiffURは,UR処理を条件付きウェーブレット成分に対処する逐次サブプロセスに分解する新しいWWDiffURである。
WaveDiffURは、訓練済みSRモデルをプラグ・アンド・プレイモジュールとして組み込むことで、低周波の詳細(グローバル整合性を保証する)と高周波成分(局所忠実性を高める)を反復的に再構築する。
このモジュール性はSDEの不備を軽減し、多様なアプリケーションにまたがるスケーラビリティを保証する。
極端倍率での固定境界条件の制約に対処するため、超微粒なウェーブレットの詳細を生成するためにWaveDiffURを誘導する動的かつ適応的なフレームワークであるクロススケールピラミッド(CSP)制約を導入する。
関連論文リスト
- Latent Diffusion, Implicit Amplification: Efficient Continuous-Scale Super-Resolution for Remote Sensing Images [7.920423405957888]
E$2$DiffSRは、最先端のSR手法と比較して、客観的な指標と視覚的品質を達成する。
拡散に基づくSR法の推論時間を非拡散法と同程度のレベルに短縮する。
論文 参考訳(メタデータ) (2024-10-30T09:14:13Z) - Frequency-aware Feature Fusion for Dense Image Prediction [99.85757278772262]
本稿では,高密度画像予測のための周波数認識機能融合(FreqFusion)を提案する。
FreqFusionは、Adaptive Low-Pass Filter (ALPF) ジェネレータ、オフセットジェネレータ、Adaptive High-Pass Filter (AHPF) ジェネレータを統合する。
包括的可視化と定量的分析は、FreqFusionが機能一貫性を効果的に改善し、オブジェクト境界を鋭くすることを示している。
論文 参考訳(メタデータ) (2024-08-23T07:30:34Z) - Frequency-Domain Refinement with Multiscale Diffusion for Super Resolution [7.29314801047906]
周波数領域誘導型マルチスケール拡散モデル(FDDiff)を提案する。
FDDiffは、高周波情報補完プロセスをよりきめ細かいステップに分解する。
FDDiffは高忠実度超解像率で先行生成法より優れていた。
論文 参考訳(メタデータ) (2024-05-16T11:58:52Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
本稿では,ACDMSRと呼ばれる拡散モデルに基づく超解像法を提案する。
提案手法は, 決定論的反復分解過程を通じて超解像を行うために, 標準拡散モデルに適応する。
提案手法は,低解像度画像に対してより視覚的に現実的な表現を生成し,現実的なシナリオにおけるその有効性を強調した。
論文 参考訳(メタデータ) (2023-07-03T06:49:04Z) - HSR-Diff:Hyperspectral Image Super-Resolution via Conditional Diffusion
Models [10.865272587124027]
条件付き拡散モデル(HSR-Diff)を用いたHSI超解像(SR)手法を提案する。
HSR-Diffは、HR-HSIが純粋なガウス雑音で空間的であり、反復的に洗練されるような繰り返し精製によりHR-HSIを生成する。
さらに、フル解像度画像のグローバル情報を活用するために、プログレッシブラーニング戦略が採用されている。
論文 参考訳(メタデータ) (2023-06-21T08:04:30Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - Implicit Diffusion Models for Continuous Super-Resolution [65.45848137914592]
本稿では,高忠実度連続画像超解像のためのインプリシティ拡散モデル(IDM)を提案する。
IDMは暗黙のニューラル表現とデノナイジング拡散モデルを統合されたエンドツーエンドフレームワークに統合する。
スケーリング係数は分解能を調節し、最終出力におけるLR情報と生成された特徴の比率を変調する。
論文 参考訳(メタデータ) (2023-03-29T07:02:20Z) - Blending Neural Operators and Relaxation Methods in PDE Numerical Solvers [3.2712166248850685]
HINTSは偏微分方程式のハイブリッド、反復、数値、移乗可能な解法である。
DeepONetのスペクトルバイアスを利用して固有モードのスペクトル間の収束挙動のバランスをとる。
離散化、計算領域、境界条件に関して柔軟である。
論文 参考訳(メタデータ) (2022-08-28T19:07:54Z) - FreqNet: A Frequency-domain Image Super-Resolution Network with Dicrete
Cosine Transform [16.439669339293747]
単一画像超解像(SISR)は低分解能(LR)入力から高分解能(HR)出力を得ることを目的とした不適切な問題である。
高ピーク信号-雑音比(PSNR)の結果にもかかわらず、モデルが望まれる高周波の詳細を正しく付加するかどうかを判断することは困難である。
本稿では、周波数領域の観点から直感的なパイプラインであるFreqNetを提案し、この問題を解決する。
論文 参考訳(メタデータ) (2021-11-21T11:49:12Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
実シーンにスーパーリゾリューション(SR)法を適用する際に周波数領域の整合性を保証する新しい周波数一貫性適応(FCA)を提案する。
監視されていない画像から劣化カーネルを推定し、対応するLow-Resolution (LR)画像を生成する。
ドメイン一貫性のあるLR-HRペアに基づいて、容易に実装可能な畳み込みニューラルネットワーク(CNN)SRモデルを訓練する。
論文 参考訳(メタデータ) (2020-12-18T08:25:39Z) - Hessian-Free High-Resolution Nesterov Acceleration for Sampling [55.498092486970364]
最適化のためのNesterovのAccelerated Gradient(NAG)は、有限のステップサイズを使用する場合の連続時間制限(ノイズなしの運動的ランゲヴィン)よりも優れたパフォーマンスを持つ。
本研究は, この現象のサンプリング法について検討し, 離散化により加速勾配に基づくMCMC法が得られる拡散過程を提案する。
論文 参考訳(メタデータ) (2020-06-16T15:07:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。