論文の概要: FreqNet: A Frequency-domain Image Super-Resolution Network with Dicrete
Cosine Transform
- arxiv url: http://arxiv.org/abs/2111.10800v1
- Date: Sun, 21 Nov 2021 11:49:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-23 16:46:41.800525
- Title: FreqNet: A Frequency-domain Image Super-Resolution Network with Dicrete
Cosine Transform
- Title(参考訳): freqnet:dicrete cosine変換を用いた周波数領域画像超解像ネットワーク
- Authors: Runyuan Cai, Yue Ding, Hongtao Lu
- Abstract要約: 単一画像超解像(SISR)は低分解能(LR)入力から高分解能(HR)出力を得ることを目的とした不適切な問題である。
高ピーク信号-雑音比(PSNR)の結果にもかかわらず、モデルが望まれる高周波の詳細を正しく付加するかどうかを判断することは困難である。
本稿では、周波数領域の観点から直感的なパイプラインであるFreqNetを提案し、この問題を解決する。
- 参考スコア(独自算出の注目度): 16.439669339293747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single image super-resolution(SISR) is an ill-posed problem that aims to
obtain high-resolution (HR) output from low-resolution (LR) input, during which
extra high-frequency information is supposed to be added to improve the
perceptual quality. Existing SISR works mainly operate in the spatial domain by
minimizing the mean squared reconstruction error. Despite the high peak
signal-to-noise ratios(PSNR) results, it is difficult to determine whether the
model correctly adds desired high-frequency details. Some residual-based
structures are proposed to guide the model to focus on high-frequency features
implicitly. However, how to verify the fidelity of those artificial details
remains a problem since the interpretation from spatial-domain metrics is
limited. In this paper, we propose FreqNet, an intuitive pipeline from the
frequency domain perspective, to solve this problem. Inspired by existing
frequency-domain works, we convert images into discrete cosine transform (DCT)
blocks, then reform them to obtain the DCT feature maps, which serve as the
input and target of our model. A specialized pipeline is designed, and we
further propose a frequency loss function to fit the nature of our
frequency-domain task. Our SISR method in the frequency domain can learn the
high-frequency information explicitly, provide fidelity and good perceptual
quality for the SR images. We further observe that our model can be merged with
other spatial super-resolution models to enhance the quality of their original
SR output.
- Abstract(参考訳): 単一画像超解像(SISR)は低分解能(LR)入力から高分解能(HR)出力を得ることを目的とした不適切な問題である。
既存のSISRは主に空間領域で動作し、平均2乗再構成誤差を最小限に抑える。
高ピーク信号-雑音比(PSNR)の結果にもかかわらず、モデルが望まれる高周波の詳細を正しく付加するかどうかを判断することは困難である。
いくつかの残留構造は、モデルが暗黙的に高周波の特徴に焦点を合わせるために提案されている。
しかし、空間領域のメトリクスからの解釈が限られているため、これらの人工的詳細性の検証方法が問題となっている。
本稿では、周波数領域の観点から直感的なパイプラインであるFreqNetを提案し、この問題を解決する。
既存の周波数領域の作業にインスパイアされ、画像を離散コサイン変換(DCT)ブロックに変換し、モデルを入力およびターゲットとするDCT特徴写像を得るように再構成する。
特殊なパイプラインを設計し,周波数領域タスクの性質に適合する周波数損失関数を提案する。
周波数領域におけるSISR法は、高周波情報を明示的に学習し、SR画像の忠実度と知覚品質を向上する。
さらに,本モデルが他の空間超解像モデルと統合され,sr出力の品質が向上することを示す。
関連論文リスト
- WAVE-UNET: Wavelength based Image Reconstruction method using attention UNET for OCT images [1.0835264351334324]
本稿では, ラムダ空間から直接, 高品質なOCT画像を再構成し, 複雑さを軽減するための体系的設計手法WAVE-UNETを提案する。
このフレームワークは、IDFT処理されたラムダ空間フリンジを入力として、アテンションゲーティングと残差接続を持つ修正UNETを使用している。
この方法は、時間複雑度を著しく低減した良質なBスキャンを生成することによって、従来のOCTシステムより一貫して優れる。
論文 参考訳(メタデータ) (2024-10-05T11:16:10Z) - FreqINR: Frequency Consistency for Implicit Neural Representation with Adaptive DCT Frequency Loss [5.349799154834945]
本稿では、新しい任意スケール超解像法であるFreqINR(FreqINR)について述べる。
トレーニングでは,適応離散コサイン変換周波数損失(adaptive Discrete Cosine Transform Frequency Loss,ADFL)を用いて,HR画像と地絡画像の周波数ギャップを最小化する。
推論の際には,低分解能(LR)画像と地軸画像のスペクトルコヒーレンスを維持するために受容場を拡張した。
論文 参考訳(メタデータ) (2024-08-25T03:53:17Z) - Spatial-Frequency U-Net for Denoising Diffusion Probabilistic Models [89.76587063609806]
画素空間の代わりにウェーブレット空間における拡散確率モデル(DDPM)を視覚合成のために検討した。
ウェーブレット信号を明示的にモデル化することで、我々のモデルは複数のデータセット上でより高品質な画像を生成することができる。
論文 参考訳(メタデータ) (2023-07-27T06:53:16Z) - A Scale-Arbitrary Image Super-Resolution Network Using Frequency-domain
Information [42.55177009667711]
画像超解像(SR)は、低分解能(LR)画像において失われた高周波情報を復元する技術である。
本稿では、周波数領域における画像の特徴を考察し、新しいスケール・アービタリー画像SRネットワークを設計する。
論文 参考訳(メタデータ) (2022-12-08T15:10:49Z) - Implicit Neural Representation Learning for Hyperspectral Image
Super-Resolution [0.0]
Inlicit Neural Representations (INR)は、新しい効果的な表現として進歩を遂げている。
本稿では、空間座標を対応するスペクトル放射率値にマッピングする連続関数により、HSIを表すINRに基づく新しいHSI再構成モデルを提案する。
論文 参考訳(メタデータ) (2021-12-20T14:07:54Z) - Fourier Space Losses for Efficient Perceptual Image Super-Resolution [131.50099891772598]
提案した損失関数の適用のみで,最近導入された効率的なジェネレータアーキテクチャの性能向上が可能であることを示す。
フーリエ空間における周波数に対する損失の直接的強調は知覚的画質を著しく向上させることを示す。
訓練されたジェネレータは、最先端の知覚的SR法である RankSRGAN と SRFlow よりも2.4倍、48倍高速である。
論文 参考訳(メタデータ) (2021-06-01T20:34:52Z) - Asymmetric CNN for image super-resolution [102.96131810686231]
深層畳み込みニューラルネットワーク(CNN)は、過去5年間で低レベルビジョンに広く適用されています。
画像超解像のための非対称ブロック(AB)、mem?ory拡張ブロック(MEB)、高周波数特徴強調ブロック(HFFEB)からなる非対称CNN(ACNet)を提案する。
我々のACNetは、ブラインドノイズの単一画像超解像(SISR)、ブラインドSISR、ブラインドSISRを効果的に処理できる。
論文 参考訳(メタデータ) (2021-03-25T07:10:46Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
実シーンにスーパーリゾリューション(SR)法を適用する際に周波数領域の整合性を保証する新しい周波数一貫性適応(FCA)を提案する。
監視されていない画像から劣化カーネルを推定し、対応するLow-Resolution (LR)画像を生成する。
ドメイン一貫性のあるLR-HRペアに基づいて、容易に実装可能な畳み込みニューラルネットワーク(CNN)SRモデルを訓練する。
論文 参考訳(メタデータ) (2020-12-18T08:25:39Z) - Hyperspectral Image Super-resolution via Deep Progressive Zero-centric
Residual Learning [62.52242684874278]
空間情報とスペクトル情報の相互モダリティ分布が問題となる。
本稿では,PZRes-Netという,新しいテクスライトウェイトなディープニューラルネットワークベースのフレームワークを提案する。
本フレームワークは,高分解能かつテクテッセロ中心の残像を学習し,シーンの空間的詳細を高頻度で表現する。
論文 参考訳(メタデータ) (2020-06-18T06:32:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。