論文の概要: Developing Explainable Machine Learning Model using Augmented Concept Activation Vector
- arxiv url: http://arxiv.org/abs/2412.19208v1
- Date: Thu, 26 Dec 2024 13:18:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:25:29.714654
- Title: Developing Explainable Machine Learning Model using Augmented Concept Activation Vector
- Title(参考訳): 拡張概念活性化ベクトルを用いた説明可能な機械学習モデルの構築
- Authors: Reza Hassanpour, Kasim Oztoprak, Niels Netten, Tony Busker, Mortaza S. Bargh, Sunil Choenni, Beyza Kizildag, Leyla Sena Kilinc,
- Abstract要約: 本稿では,機械学習モデルによる高レベルの概念と意思決定の相関性を測定する手法を提案する。
提案手法は,与えられたハイレベルな概念の影響を分離し,定量的に測定することができる。
本研究では、不均衡なデータセットで頻繁に発生する機械学習モデルにおける頻繁なパターンの頻度を決定することを目的とする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Machine learning models use high dimensional feature spaces to map their inputs to the corresponding class labels. However, these features often do not have a one-to-one correspondence with physical concepts understandable by humans, which hinders the ability to provide a meaningful explanation for the decisions made by these models. We propose a method for measuring the correlation between high-level concepts and the decisions made by a machine learning model. Our method can isolate the impact of a given high-level concept and accurately measure it quantitatively. Additionally, this study aims to determine the prevalence of frequent patterns in machine learning models, which often occur in imbalanced datasets. We have successfully applied the proposed method to fundus images and managed to quantitatively measure the impact of radiomic patterns on the model decisions.
- Abstract(参考訳): 機械学習モデルは高次元の特徴空間を用いて入力を対応するクラスラベルにマッピングする。
しかしながら、これらの特徴は人間によって理解可能な物理的概念と1対1の対応を持たず、これらのモデルによって決定された決定に対して意味のある説明を与える能力を妨げている。
本稿では,機械学習モデルによる高レベルの概念と意思決定の相関性を測定する手法を提案する。
提案手法は,与えられたハイレベルな概念の影響を分離し,定量的に測定することができる。
さらに、この研究では、不均衡なデータセットで頻繁に発生する機械学習モデルにおける頻繁なパターンの頻度を決定することを目的としている。
提案手法を基礎画像に適用し, モデル決定に対する放射能パターンの影響を定量的に測定した。
関連論文リスト
- Causal Estimation of Memorisation Profiles [58.20086589761273]
言語モデルにおける記憶の理解は、実践的および社会的意味を持つ。
覚書化(英: Memorisation)とは、モデルがそのインスタンスを予測できる能力に対して、あるインスタンスでトレーニングを行うことによる因果的影響である。
本稿では,計量学の差分差分設計に基づく,新しい,原理的,効率的な記憶推定法を提案する。
論文 参考訳(メタデータ) (2024-06-06T17:59:09Z) - Unified Explanations in Machine Learning Models: A Perturbation Approach [0.0]
XAIとモデリング技術の不整合は、これらの説明可能性アプローチの有効性に疑念を投げかけるという望ましくない効果をもたらす可能性がある。
我々はXAI, SHapley Additive exPlanations (Shap) において, 一般的なモデルに依存しない手法に対する系統的摂動解析を提案する。
我々は、一般的な機械学習とディープラーニングの手法のスイートと、静的ケースホールドで生成された説明の正確さを定量化するためのメトリクスの中で、動的推論の設定において、相対的な特徴重要度を生成するアルゴリズムを考案した。
論文 参考訳(メタデータ) (2024-05-30T16:04:35Z) - Physics-Inspired Interpretability Of Machine Learning Models [0.0]
機械学習モデルによる意思決定を説明する能力は、AIの普及に最も大きなハードルのひとつだ。
本研究では,エネルギー景観分野の手法にインスパイアされた入力データの特徴を同定する手法を提案する。
論文 参考訳(メタデータ) (2023-04-05T11:35:17Z) - Effective dimension of machine learning models [4.721845865189576]
新しいデータを含むタスクにおけるトレーニング済みモデルのパフォーマンスに関する声明を作ることが、機械学習の主要な目標のひとつだ。
様々な能力測定は、この能力を捉えようとするが、通常、我々が実際に観察するモデルの重要な特性を説明するのに不足する。
本稿では,標準データセットの一般化誤差と相関するキャパシティ尺度として,局所有効次元を提案する。
論文 参考訳(メタデータ) (2021-12-09T10:00:18Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z) - Explainable Matrix -- Visualization for Global and Local
Interpretability of Random Forest Classification Ensembles [78.6363825307044]
本研究では,ランダムフォレスト (RF) 解釈のための新しい可視化手法である Explainable Matrix (ExMatrix) を提案する。
単純なマトリックスのようなメタファで、行はルール、列は特徴、セルはルールを述語する。
ExMatrixの適用性は、異なる例を通じて確認され、RFモデルの解釈可能性を促進するために実際にどのように使用できるかを示している。
論文 参考訳(メタデータ) (2020-05-08T21:03:48Z) - A Hierarchy of Limitations in Machine Learning [0.0]
本稿では,社会に応用された機械学習におけるモデルの概念的,手続き的,統計的制限の包括的,構造化された概要を論じる。
モデラー自身は、記述された階層を使って、可能な障害点を特定し、それらに対処する方法を考えることができます。
機械学習モデルの消費者は、機械学習を適用するかどうか、場所、方法に関する決定に直面したときに、何を問うべきかを知ることができる。
論文 参考訳(メタデータ) (2020-02-12T19:39:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。