Learning Cross-Domain Representations for Transferable Drug Perturbations on Single-Cell Transcriptional Responses
- URL: http://arxiv.org/abs/2412.19228v2
- Date: Wed, 15 Jan 2025 01:16:30 GMT
- Title: Learning Cross-Domain Representations for Transferable Drug Perturbations on Single-Cell Transcriptional Responses
- Authors: Hui Liu, Shikai Jin,
- Abstract summary: Phenotypic drug discovery has attracted widespread attention because of its potential to identify bioactive molecules.
In this paper, we propose XTransferCDR, a novel generative framework designed for feature decoupling and transferable representation learning.
The experimental results show that XTransferCDR achieved better performance than current state-of-the-art methods.
- Score: 3.5863110323469
- License:
- Abstract: Phenotypic drug discovery has attracted widespread attention because of its potential to identify bioactive molecules. Transcriptomic profiling provides a comprehensive reflection of phenotypic changes in cellular responses to external perturbations. In this paper, we propose XTransferCDR, a novel generative framework designed for feature decoupling and transferable representation learning across domains. Given a pair of perturbed expression profiles, our approach decouples the perturbation representations from basal states through domain separation encoders and then cross-transfers them in the latent space. The transferred representations are then used to reconstruct the corresponding perturbed expression profiles via a shared decoder. This cross-transfer constraint effectively promotes the learning of transferable drug perturbation representations. We conducted extensive evaluations of our model on multiple datasets, including single-cell transcriptional responses to drugs and single- and combinatorial genetic perturbations. The experimental results show that XTransferCDR achieved better performance than current state-of-the-art methods, showcasing its potential to advance phenotypic drug discovery.
Related papers
- Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Diffusion Model with Cross Attention as an Inductive Bias for Disentanglement [58.9768112704998]
Disentangled representation learning strives to extract the intrinsic factors within observed data.
We introduce a new perspective and framework, demonstrating that diffusion models with cross-attention can serve as a powerful inductive bias.
This is the first work to reveal the potent disentanglement capability of diffusion models with cross-attention, requiring no complex designs.
arXiv Detail & Related papers (2024-02-15T05:07:54Z) - Interpretable Modeling of Single-cell perturbation Responses to Novel
Drugs Using Cycle Consistence Learning [11.565323524917693]
Phenotype-based screening has attracted much attention for identifying cell-active compounds.
We propose a deep learning framework that maps the initial cellular states to a latent space.
We validated our model on three different types of datasets.
arXiv Detail & Related papers (2023-11-17T03:58:59Z) - Cross-Modal Translation and Alignment for Survival Analysis [7.657906359372181]
We present a framework to explore the intrinsic cross-modal correlations and transfer potential complementary information.
Our experiments on five public TCGA datasets demonstrate that our proposed framework outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2023-09-22T13:29:14Z) - Transfer Learning on Heterogeneous Feature Spaces for Treatment Effects
Estimation [103.55894890759376]
This paper introduces several building blocks that use representation learning to handle the heterogeneous feature spaces.
We show how these building blocks can be used to recover transfer learning equivalents of the standard CATE learners.
arXiv Detail & Related papers (2022-10-08T16:41:02Z) - Unsupervised Misaligned Infrared and Visible Image Fusion via
Cross-Modality Image Generation and Registration [59.02821429555375]
We present a robust cross-modality generation-registration paradigm for unsupervised misaligned infrared and visible image fusion.
To better fuse the registered infrared images and visible images, we present a feature Interaction Fusion Module (IFM)
arXiv Detail & Related papers (2022-05-24T07:51:57Z) - Communicative Subgraph Representation Learning for Multi-Relational
Inductive Drug-Gene Interaction Prediction [17.478102754113294]
We propose a novel Communicative Subgraph representation learning for Multi-relational Inductive drug-Gene interactions prediction (CoSMIG)
The model strengthened the relations on the drug-gene graph through a communicative message passing mechanism.
Our method outperformed state-of-the-art baselines in the transductive scenarios and achieved superior performance in the inductive ones.
arXiv Detail & Related papers (2022-05-12T08:53:45Z) - MoReL: Multi-omics Relational Learning [26.484803417186384]
We propose a novel deep Bayesian generative model to efficiently infer a multi-partite graph encoding molecular interactions across heterogeneous views.
With such an optimal transport regularization in the deep Bayesian generative model, it not only allows incorporating view-specific side information, but also increases the model flexibility with the distribution-based regularization.
arXiv Detail & Related papers (2022-03-15T02:50:07Z) - Weakly-Supervised Cross-Domain Adaptation for Endoscopic Lesions
Segmentation [79.58311369297635]
We propose a new weakly-supervised lesions transfer framework, which can explore transferable domain-invariant knowledge across different datasets.
A Wasserstein quantified transferability framework is developed to highlight widerange transferable contextual dependencies.
A novel self-supervised pseudo label generator is designed to equally provide confident pseudo pixel labels for both hard-to-transfer and easy-to-transfer target samples.
arXiv Detail & Related papers (2020-12-08T02:26:03Z) - What Can Be Transferred: Unsupervised Domain Adaptation for Endoscopic
Lesions Segmentation [51.7837386041158]
We develop a new unsupervised semantic transfer model including two complementary modules for endoscopic lesions segmentation.
Specifically, T_D focuses on where to translate transferable visual information of medical lesions via residual transferability-aware bottleneck.
T_F highlights how to augment transferable semantic features of various lesions and automatically ignore untransferable representations.
arXiv Detail & Related papers (2020-04-24T00:57:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.