論文の概要: Implementing a Robot Intrusion Prevention System (RIPS) for ROS 2
- arxiv url: http://arxiv.org/abs/2412.19272v1
- Date: Thu, 26 Dec 2024 16:25:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:24:07.313403
- Title: Implementing a Robot Intrusion Prevention System (RIPS) for ROS 2
- Title(参考訳): ROS2のためのロボット侵入防止システム(RIPS)の実装
- Authors: Enrique Soriano-Salvador, Francisco Martín-Rico, Gorka Guardiola Múzquiz,
- Abstract要約: RIPSは,ROS 2.0に基づくロボットアプリケーションに適した侵入防止システムである。
この原稿は、問題を包括的に説明し、ROS2アプリケーションのセキュリティ面と、ロボット環境のために開発した脅威モデルの重要なポイントを提供します。
- 参考スコア(独自算出の注目度): 0.4613900711472571
- License:
- Abstract: It is imperative to develop an intrusion prevention system (IPS), specifically designed for autonomous robotic systems. This is due to the unique nature of these cyber-physical systems (CPS), which are not merely typical distributed systems. These systems employ their own systems software (i.e. robotic middleware and frameworks) and execute distinct components to facilitate interaction with various sensors and actuators, and other robotic components (e.g. cognitive subsystems). Furthermore, as cyber-physical systems, they engage in interactions with humans and their physical environment, as exemplified by social robots. These interactions can potentially lead to serious consequences, including physical damage. In response to this need, we have designed and implemented RIPS, an intrusion prevention system tailored for robotic applications based on ROS 2, the framework that has established itself as the de facto standard for developing robotic applications. This manuscript provides a comprehensive exposition of the issue, the security aspects of ROS 2 applications, and the key points of the threat model we created for our robotic environment. It also describes the architecture and the implementation of our initial research prototype and a language specifically designed for defining detection and prevention rules for diverse, real-world robotic scenarios. Moreover, the manuscript provides a comprehensive evaluation of the approach, that includes a set of experiments with a real social robot executing a well known testbed used in international robotic competitions.
- Abstract(参考訳): 自律型ロボットシステムに特化して設計された侵入防止システム(IPS)を開発することが不可欠である。
これは、サイバー物理システム(CPS)の独特な性質によるものであり、単なる典型的な分散システムではない。
これらのシステムは独自のシステムソフトウェア(例えば、ロボットミドルウェアとフレームワーク)を使用し、様々なセンサーやアクチュエータ、その他のロボットコンポーネント(例えば認知サブシステム)との相互作用を促進するために異なるコンポーネントを実行する。
さらに、サイバー物理システムとして、社会ロボットによって実証されたように、人間と物理的環境との相互作用に従事している。
これらの相互作用は、物理的損傷を含む深刻な結果をもたらす可能性がある。
そこで我々は,ロボットアプリケーション開発におけるデファクトスタンダードとして確立した ROS 2 に基づくロボットアプリケーションに適した侵入防止システム RIPS を設計,実装した。
この原稿は、問題を包括的に説明し、ROS2アプリケーションのセキュリティ面と、ロボット環境のために開発した脅威モデルの重要なポイントを提供します。
また、我々の初期の研究プロトタイプのアーキテクチャと実装と、多様な現実世界のロボットシナリオの検出と防止のルールを定義するために特別に設計された言語についても説明する。
さらに、本書は、実際の社会ロボットを用いて、国際ロボット競技でよく知られたテストベッドを実行する一連の実験を含む、アプローチの包括的な評価を提供する。
関連論文リスト
- Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
本稿では,VLAに基づくロボットシステムのロバスト性を体系的に評価する。
本研究では,ロボット行動の不安定化に空間的基盤を活用する,標的のない位置認識型攻撃目標を提案する。
また、カメラの視野内に小さなカラフルなパッチを配置し、デジタル環境と物理環境の両方で効果的に攻撃を実行する逆パッチ生成アプローチを設計する。
論文 参考訳(メタデータ) (2024-11-18T01:52:20Z) - $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
本稿では,インターネット規模のセマンティック知識を継承するために,事前学習された視覚言語モデル(VLM)上に構築された新しいフローマッチングアーキテクチャを提案する。
我々は,事前訓練後のタスクをゼロショットで実行し,人からの言語指導に追従し,微調整で新たなスキルを習得する能力の観点から,我々のモデルを評価した。
論文 参考訳(メタデータ) (2024-10-31T17:22:30Z) - $\textbf{EMOS}$: $\textbf{E}$mbodiment-aware Heterogeneous $\textbf{M}$ulti-robot $\textbf{O}$perating $\textbf{S}$ystem with LLM Agents [33.77674812074215]
異種ロボット間の効果的な協調を実現するための新しいマルチエージェントフレームワークを提案する。
エージェントがロボットURDFファイルを理解し、ロボットキネマティクスツールを呼び出し、その物理能力の記述を生成する。
Habitat-MASベンチマークは、マルチエージェントフレームワークがエンボディメント認識推論を必要とするタスクをどのように処理するかを評価するように設計されている。
論文 参考訳(メタデータ) (2024-10-30T03:20:01Z) - Socially Pertinent Robots in Gerontological Healthcare [78.35311825198136]
本論文は,パリの保育所における患者と同伴者による2つの実験を通じて,社会的・対話的相互作用能力を備えたフルサイズのヒューマノイドロボットを用いて,この疑問に部分的に答えようとする試みである。
特に、ロボットの知覚とアクションスキルが環境の雑多さに対して堅牢であり、さまざまなインタラクションを扱うために柔軟である場合、ユーザーはこの技術を受け入れる。
論文 参考訳(メタデータ) (2024-04-11T08:43:37Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
本稿では,コード生成を利用したデプロイ可能なロボット操作パイプラインのためのプラットフォームである textbfRobotScript を提案する。
自由形自然言語におけるロボット操作タスクのためのコード生成ベンチマークも提案する。
我々は,Franka と UR5 のロボットアームを含む,複数のロボットエボディメントにまたがるコード生成フレームワークの適応性を実証した。
論文 参考訳(メタデータ) (2024-02-22T15:12:00Z) - Cybersecurity and Embodiment Integrity for Modern Robots: A Conceptual Framework [3.29295880899738]
我々は、異なるデバイスに対するサイバー攻撃が、ロボットのタスクを完了させる能力に根本的に異なる結果をもたらすことを示す。
我々はまた、現代のロボットは、そのような側面に関して自己認識を持つべきだと主張する。
これらの提案を達成するには、ロボットは概念的にデバイスとタスクをリンクする少なくとも3つの特性を持つ必要がある。
論文 参考訳(メタデータ) (2024-01-15T15:46:38Z) - Toward General-Purpose Robots via Foundation Models: A Survey and Meta-Analysis [82.59451639072073]
汎用ロボットはどんな環境でも、どんな物体でもシームレスに動作し、様々なスキルを使って様々なタスクをこなす。
コミュニティとしては、特定のタスク用に設計し、特定のデータセットでトレーニングし、特定の環境にデプロイすることで、ほとんどのロボットシステムを制約してきました。
ウェブスケールで大規模で大容量の事前学習型モデルの優れたオープンセット性能とコンテンツ生成能力に感銘を受けて,本調査は,汎用ロボティクスに基礎モデルを適用する方法について検討した。
論文 参考訳(メタデータ) (2023-12-14T10:02:55Z) - Security Considerations in AI-Robotics: A Survey of Current Methods,
Challenges, and Opportunities [4.466887678364242]
本稿では,AI-ロボティクスシステムにおけるセキュリティ問題への対処の必要性から,3次元にわたる包括的調査と分類について述べる。
まず、潜在的な攻撃面を調査し、防御戦略を緩和することから始める。
次に、依存関係や心理的影響などの倫理的問題や、これらのシステムに対する説明責任に関する法的懸念を掘り下げる。
論文 参考訳(メタデータ) (2023-10-12T17:54:20Z) - Towards a Causal Probabilistic Framework for Prediction,
Action-Selection & Explanations for Robot Block-Stacking Tasks [4.244706520140677]
因果モデル(英: Causal model)は、ロボットの環境との相互作用を管理する因果関係の形式的知識を符号化する原則的な枠組みを提供する。
本研究では,物理シミュレーション機能を構造因果モデルに組み込むことで,ロボットがブロックスタッキングタスクの現況を認識・評価できる新しい因果確率的枠組みを提案する。
論文 参考訳(メタデータ) (2023-08-11T15:58:15Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Autonomous Intruder Detection Using a ROS-Based Multi-Robot System
Equipped with 2D-LiDAR Sensors [0.5512295869673147]
本稿では,中央ロボットMIDNetによる全ロボットからの検知を集中処理する単一距離センサ/ロボットシナリオにおける侵入者検出のためのマルチロボットシステムを提案する。
この作業は、人手なしで倉庫に自律的なマルチロボットセキュリティソリューションを提供することを目的としている。
論文 参考訳(メタデータ) (2020-11-07T19:49:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。