Quantum-Inspired Weight-Constrained Neural Network: Reducing Variable Numbers by 100x Compared to Standard Neural Networks
- URL: http://arxiv.org/abs/2412.19355v1
- Date: Thu, 26 Dec 2024 21:35:12 GMT
- Title: Quantum-Inspired Weight-Constrained Neural Network: Reducing Variable Numbers by 100x Compared to Standard Neural Networks
- Authors: Shaozhi Li, M Sabbir Salek, Binayyak Roy, Yao Wang, Mashrur Chowdhury,
- Abstract summary: We develop a classical weight-constrained neural network that generates weights based on quantum-inspired insights.
This approach can reduce the number of variables in a classical neural network by a factor of 135 while preserving its learnability.
In addition, we develop a dropout method to enhance the robustness of quantum machine learning models, which are highly susceptible to adversarial attacks.
- Score: 5.6805708828651
- License:
- Abstract: Although quantum machine learning has shown great promise, the practical application of quantum computers remains constrained in the noisy intermediate-scale quantum era. To take advantage of quantum machine learning, we investigate the underlying mathematical principles of these quantum models and adapt them to classical machine learning frameworks. Specifically, we develop a classical weight-constrained neural network that generates weights based on quantum-inspired insights. We find that this approach can reduce the number of variables in a classical neural network by a factor of 135 while preserving its learnability. In addition, we develop a dropout method to enhance the robustness of quantum machine learning models, which are highly susceptible to adversarial attacks. This technique can also be applied to improve the adversarial resilience of the classical weight-constrained neural network, which is essential for industry applications, such as self-driving vehicles. Our work offers a novel approach to reduce the complexity of large classical neural networks, addressing a critical challenge in machine learning.
Related papers
- Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
Modern AI systems are often built on neural networks.
We propose a framework where classical neural network layers are gradually replaced by quantum layers.
We conduct numerical experiments on image classification datasets to demonstrate the change of performance brought by the systematic introduction of quantum components.
arXiv Detail & Related papers (2024-09-26T07:01:29Z) - CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - A General Approach to Dropout in Quantum Neural Networks [1.5771347525430772]
"Overfitting" is the phenomenon occurring when a given model learns the training data excessively well.
With the advent of Quantum Neural Networks as learning models, overfitting might soon become an issue.
arXiv Detail & Related papers (2023-10-06T09:39:30Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - Quantum Neural Network for Quantum Neural Computing [0.0]
We propose a new quantum neural network model for quantum neural computing.
Our model circumvents the problem that the state-space size grows exponentially with the number of neurons.
We benchmark our model for handwritten digit recognition and other nonlinear classification tasks.
arXiv Detail & Related papers (2023-05-15T11:16:47Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Quantum neural networks with deep residual learning [29.929891641757273]
In this paper, a novel quantum neural network with deep residual learning (ResQNN) is proposed.
Our ResQNN is able to learn an unknown unitary and get remarkable performance.
arXiv Detail & Related papers (2020-12-14T18:11:07Z) - The power of quantum neural networks [3.327474729829121]
In the near-term, however, the benefits of quantum machine learning are not so clear.
We use tools from information geometry to define a notion of expressibility for quantum and classical models.
We show that quantum neural networks are able to achieve a significantly better effective dimension than comparable classical neural networks.
arXiv Detail & Related papers (2020-10-30T18:13:32Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.