論文の概要: Spectral-Temporal Fusion Representation for Person-in-Bed Detection
- arxiv url: http://arxiv.org/abs/2412.19404v1
- Date: Fri, 27 Dec 2024 02:05:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:28:15.673036
- Title: Spectral-Temporal Fusion Representation for Person-in-Bed Detection
- Title(参考訳): 対人層検出のためのスペクトル-時間融合表現法
- Authors: Xuefeng Yang, Shiheng Zhang, Jian Guan, Feiyang Xiao, Wei Lu, Qiaoxi Zhu,
- Abstract要約: 本研究はICASSP 2025 Signal Processing Grand Challenge's Accelerometer-based Person-in-Bed Detection Challengeに基づく。
作業は、"in bed"と"not in bed"の2つのトラックに分けられる。
混合データ拡張を用いたスペクトル時間融合に基づく特徴表現法を提案し、検出精度を最適化するために、IoU(Intersection over Union)損失を適用した。
- 参考スコア(独自算出の注目度): 25.610938130411043
- License:
- Abstract: This study is based on the ICASSP 2025 Signal Processing Grand Challenge's Accelerometer-Based Person-in-Bed Detection Challenge, which aims to determine bed occupancy using accelerometer signals. The task is divided into two tracks: "in bed" and "not in bed" segmented detection, and streaming detection, facing challenges such as individual differences, posture variations, and external disturbances. We propose a spectral-temporal fusion-based feature representation method with mixup data augmentation, and adopt Intersection over Union (IoU) loss to optimize detection accuracy. In the two tracks, our method achieved outstanding results of 100.00% and 95.55% in detection scores, securing first place and third place, respectively.
- Abstract(参考訳): 本研究は, ICASSP 2025 Signal Processing Grand Challenge's Accelerometer-based Person-in-Bed Detection Challengeに基づく。
タスクは「ベッド内」と「ベッド内」の2つのトラックに分けられ、セグメント検出とストリーミング検出、個人差、姿勢の変化、外乱といった課題に直面している。
混合データ拡張を用いたスペクトル時間融合に基づく特徴表現法を提案し、検出精度を最適化するために、IoU(Intersection over Union)損失を適用した。
両トラックにおいて,検出スコアは100.00%,95.55%,それぞれ1位と3位を確保した。
関連論文リスト
- Dense Object Detection Based on De-homogenized Queries [12.33849715319161]
デンス物体検出は、自動走行、ビデオ監視、その他の分野で広く利用されている。
現在、非最大抑圧(NMS)のような欲求的アルゴリズムに基づく検出手法は、密集したシナリオにおいて繰り返し予測や欠落検出をしばしば生成している。
終端から終端までのDETR(Detection TRansformer)をNMSなどの後処理の復号化能力をネットワークに組み込む検知器として利用することで,クエリベースの検出器における均一なクエリがネットワークの復号化能力とエンコーダの学習効率を低下させることがわかった。
論文 参考訳(メタデータ) (2025-02-11T02:36:10Z) - Spectrum-oriented Point-supervised Saliency Detector for Hyperspectral Images [13.79887292039637]
ハイパースペクトル・サリエント物体検出(HSOD)における点監督について紹介する。
本稿では,従来のHSOD法から派生したスペクトル・サリエンシを,そのフレームワーク内で重要なスペクトル表現として組み込む。
本稿では,HSIに特化して設計された新しいパイプラインを提案し,点監督戦略に関連した性能低下を効果的に軽減する。
論文 参考訳(メタデータ) (2024-12-24T02:52:43Z) - Adaptive Signal Analysis for Automated Subsurface Defect Detection Using Impact Echo in Concrete Slabs [0.0]
本研究は,コンクリートスラブの地下欠陥発生領域を検出するための,新しい,自動化された,スケーラブルな手法を提案する。
このアプローチは、高度な信号処理、クラスタリング、および視覚分析を統合して、地下の異常を識別する。
結果は方法論の堅牢性を示し、最小限の偽陽性とほとんど欠陥のない欠陥発生領域を一貫して同定した。
論文 参考訳(メタデータ) (2024-12-23T20:05:53Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
周波数領域のセマンティック階層によって駆動される新しい学習可能かつ分離可能な周波数知覚機構を提案する。
ネットワーク全体では、周波数誘導粗い局所化ステージと細部保存の微細局在化ステージを含む2段階モデルを採用している。
提案手法は,既存のモデルと比較して,3つのベンチマークデータセットにおいて競合性能を実現する。
論文 参考訳(メタデータ) (2023-08-17T11:30:46Z) - Multi-scale Spatial-temporal Interaction Network for Video Anomaly
Detection [3.113134714967787]
ビデオ異常検出(VAD)は信号処理において不可欠な課題である。
VADのためのマルチスケール空間時間相互作用ネットワーク(MSTI-Net)を提案する。
論文 参考訳(メタデータ) (2023-06-17T02:40:29Z) - Deep Spectro-temporal Artifacts for Detecting Synthesized Speech [57.42110898920759]
本稿では,トラック1(低品質フェイク音声検出)とトラック2(部分フェイク音声検出)の総合評価を行う。
本稿では, 原時間信号, スペクトル特性, 深層埋没特性を用いて, 分光時相アーティファクトを検出した。
我々はそれぞれ1番線と2番線で4位と5位にランクインした。
論文 参考訳(メタデータ) (2022-10-11T08:31:30Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
本稿では,SkewIoU損失とトレンドレベルアライメントを両立できる近似的損失を考案する上で,有効な方法の1つとして論じる。
具体的には、対象をガウス分布としてモデル化し、SkewIoUのメカニズムを本質的に模倣するためにカルマンフィルタを採用する。
KFIoUと呼ばれる新たな損失は実装が容易で、正確なSkewIoUよりもうまく動作する。
論文 参考訳(メタデータ) (2022-01-29T10:54:57Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
現在のCNNベースの検出器は、メソッド固有の色テクスチャに過度に適合するため、一般化に失敗する傾向にある。
フェースフォージェリ検出に高周波雑音を用いることを提案する。
1つは、複数のスケールで高周波ノイズを抽出するマルチスケールの高周波特徴抽出モジュールである。
2つ目は、低レベルRGB特徴抽出器を導く残差誘導空間注意モジュールで、新しい視点からフォージェリートレースにもっと集中する。
論文 参考訳(メタデータ) (2021-03-23T08:19:21Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
正規データと異常データの間のKL偏差を計測する新たな目的関数を提案する。
提案手法は,複数のベンチマークデータセットの最先端性能を著しく上回っている。
論文 参考訳(メタデータ) (2020-12-09T08:16:35Z) - Single-stage intake gesture detection using CTC loss and extended prefix
beam search [8.22379888383833]
個々の摂取行動の正確な検出は、自動食事監視への重要なステップである。
本稿では,センサデータから得られた確率を直接,スパース摂取検出にデコードする単一ステージアプローチを提案する。
論文 参考訳(メタデータ) (2020-08-07T06:04:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。