論文の概要: The Value of AI Advice: Personalized and Value-Maximizing AI Advisors Are Necessary to Reliably Benefit Experts and Organizations
- arxiv url: http://arxiv.org/abs/2412.19530v1
- Date: Fri, 27 Dec 2024 08:50:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:24:43.095850
- Title: The Value of AI Advice: Personalized and Value-Maximizing AI Advisors Are Necessary to Reliably Benefit Experts and Organizations
- Title(参考訳): AIアドバイスの価値: 専門家や組織に確実に貢献するためには、パーソナライズされ、価値を最大化するAIアドバイザが必要である
- Authors: Nicholas Wolczynski, Maytal Saar-Tsechansky, Tong Wang,
- Abstract要約: AIのパフォーマンスの進歩にもかかわらず、AIアドバイザーは専門家の判断を損なうことができ、専門家が意思決定のために投資しなければならない時間と労力を増やすことができる。
AIアドバイザの設計と評価において、AIアドバイスが現実世界のコンテキストにもたらす価値を評価することの重要性を強調します。
我々の結果は、AIアドバイザのシステムレベルの価値駆動開発の必要性を強調し、専門家の独特な振る舞いに適応し、意思決定の改善と助言コストの間のコンテキスト固有のトレードオフに最適化されている。
- 参考スコア(独自算出の注目度): 8.434663608756253
- License:
- Abstract: Despite advances in AI's performance and interpretability, AI advisors can undermine experts' decisions and increase the time and effort experts must invest to make decisions. Consequently, AI systems deployed in high-stakes settings often fail to consistently add value across contexts and can even diminish the value that experts alone provide. Beyond harm in specific domains, such outcomes impede progress in research and practice, underscoring the need to understand when and why different AI advisors add or diminish value. To bridge this gap, we stress the importance of assessing the value AI advice brings to real-world contexts when designing and evaluating AI advisors. Building on this perspective, we characterize key pillars -- pathways through which AI advice impacts value -- and develop a framework that incorporates these pillars to create reliable, personalized, and value-adding advisors. Our results highlight the need for system-level, value-driven development of AI advisors that advise selectively, are tailored to experts' unique behaviors, and are optimized for context-specific trade-offs between decision improvements and advising costs. They also reveal how the lack of inclusion of these pillars in the design of AI advising systems may be contributing to the failures observed in practical applications.
- Abstract(参考訳): AIのパフォーマンスと解釈可能性の進歩にもかかわらず、AIアドバイザーは専門家の判断を弱め、専門家が意思決定のために投資しなければならない時間と労力を増やすことができる。
その結果、ハイテイクな設定でデプロイされるAIシステムは、コンテキスト間で常に価値を付加することができず、専門家のみが提供する価値を低下させる可能性がある。
特定の領域における害以外にも、これらの成果は研究や実践の進歩を阻害し、異なるAIアドバイザーがいつ、なぜ価値を増減するかを理解する必要性を強調している。
このギャップを埋めるために、私たちは、AIアドバイザの設計と評価において、AIアドバイスが現実世界のコンテキストにもたらす価値を評価することの重要性を強調します。
この視点に基づいて、AIアドバイスが価値に影響を与える重要な柱 -- を特徴づけ、信頼性、パーソナライズ、付加価値のアドバイザを作成するためにこれらの柱を組み込んだフレームワークを開発する。
我々の結果は、AIアドバイザのシステムレベルの価値駆動開発の必要性を強調し、専門家の独特な振る舞いに適応し、意思決定の改善と助言コストの間のコンテキスト固有のトレードオフに最適化されている。
彼らはまた、AI助言システムの設計にこれらの柱が組み込まれていないことが、実践的なアプリケーションで観察される失敗にどのように貢献するかを明らかにしている。
関連論文リスト
- Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - To Err Is AI! Debugging as an Intervention to Facilitate Appropriate Reliance on AI Systems [11.690126756498223]
最適な人間とAIのコラボレーションのためのビジョンは、人間のAIシステムへの「適切な依存」を必要とする。
実際には、アウト・オブ・ディストリビューションデータにおける機械学習モデルの性能格差は、データセット固有のパフォーマンスフィードバックを信頼できないものにしている。
論文 参考訳(メタデータ) (2024-09-22T09:43:27Z) - Reasons to Doubt the Impact of AI Risk Evaluations [0.0]
本稿では、評価がAIリスクに対する理解と、そのリスクを緩和する能力を大幅に改善するかどうかを問う。
評価プラクティスの改善と、AIラボ、外部評価者、規制当局、学術研究者のための12の推奨事項を結論付けている。
論文 参考訳(メタデータ) (2024-08-05T15:42:51Z) - EARN Fairness: Explaining, Asking, Reviewing, and Negotiating Artificial Intelligence Fairness Metrics Among Stakeholders [5.216732191267959]
我々は、AIの専門知識を必要とせず、利害関係者間でのメトリクスの集合的決定を促進する新しいフレームワークEARN Fairnessを提案する。
このフレームワークは、適応可能なインタラクティブシステムと、公正度指標を説明するステークホルダ中心のEARNフェアネスプロセス、利害関係者の個人的メトリック選好、総括的メトリクス、メトリクス選択に関するコンセンサスを交渉する。
我々の研究によると、EARN Fairnessフレームワークは、利害関係者が個人の好みを表現し、合意に達することを可能にし、リスクの高い状況下で人間中心のAIフェアネスを実装するための実践的なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-07-16T07:20:30Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - Beyond Recommender: An Exploratory Study of the Effects of Different AI
Roles in AI-Assisted Decision Making [48.179458030691286]
Recommender、Analyzer、Devil's Advocateの3つのAIの役割について検討する。
以上の結果から,各役割のタスクパフォーマンス,信頼性の適切性,ユーザエクスペリエンスにおける長所と短所が明らかとなった。
これらの洞察は、異なる状況に応じて適応的な機能的役割を持つAIアシスタントを設計する上で、貴重な意味を提供する。
論文 参考訳(メタデータ) (2024-03-04T07:32:28Z) - Investigating Responsible AI for Scientific Research: An Empirical Study [4.597781832707524]
このような機関におけるResponsible AI(RAI)の推進は、AI設計と開発に倫理的配慮を統合することの重要性の高まりを強調している。
本稿では,AI設計・開発に内在する倫理的リスクに対する意識と準備性を評価することを目的とする。
その結果、倫理的、責任的、包括的AIに関する知識ギャップが明らかとなり、利用可能なAI倫理フレームワークに対する認識が制限された。
論文 参考訳(メタデータ) (2023-12-15T06:40:27Z) - Guideline for Trustworthy Artificial Intelligence -- AI Assessment
Catalog [0.0]
AIアプリケーションとそれに基づくビジネスモデルが、高品質な標準に従って開発されている場合にのみ、その潜在能力を最大限に発揮できることは明らかです。
AIアプリケーションの信頼性の問題は非常に重要であり、多くの主要な出版物の主題となっている。
このAIアセスメントカタログは、まさにこの点に対応しており、2つのターゲットグループを対象としている。
論文 参考訳(メタデータ) (2023-06-20T08:07:18Z) - Doubting AI Predictions: Influence-Driven Second Opinion Recommendation [92.30805227803688]
我々は,補完的な意見を提供する可能性のある専門家を識別する,共通の組織的実践に基づいて,人間とAIのコラボレーションを強化する方法を提案する。
提案手法は、一部の専門家がアルゴリズムによる評価に異を唱えるかどうかを特定することによって、生産的な不一致を活用することを目的としている。
論文 参考訳(メタデータ) (2022-04-29T20:35:07Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Decision Rule Elicitation for Domain Adaptation [93.02675868486932]
ヒトインザループ機械学習は、専門家からラベルを引き出すために人工知能(AI)で広く使用されています。
この作業では、専門家が意思決定を説明する決定ルールを作成できるようにします。
決定規則の適用はアルゴリズムのドメイン適応を改善し、専門家の知識をAIモデルに広めるのに役立つことを示す。
論文 参考訳(メタデータ) (2021-02-23T08:07:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。