SocRATES: Towards Automated Scenario-based Testing of Social Navigation Algorithms
- URL: http://arxiv.org/abs/2412.19595v1
- Date: Fri, 27 Dec 2024 11:33:19 GMT
- Title: SocRATES: Towards Automated Scenario-based Testing of Social Navigation Algorithms
- Authors: Shashank Rao Marpally, Pranav Goyal, Harold Soh,
- Abstract summary: We propose a more comprehensive evaluation of social navigation through scenario-based testing.
We introduce a pipeline that automates the generation of context-, and location-appropriate social navigation scenarios.
Our experiments show that our pipeline produces realistic scenarios and significantly improves scenario translation.
- Score: 11.408168957500633
- License:
- Abstract: Current social navigation methods and benchmarks primarily focus on proxemics and task efficiency. While these factors are important, qualitative aspects such as perceptions of a robot's social competence are equally crucial for successful adoption and integration into human environments. We propose a more comprehensive evaluation of social navigation through scenario-based testing, where specific human-robot interaction scenarios can reveal key robot behaviors. However, creating such scenarios is often labor-intensive and complex. In this work, we address this challenge by introducing a pipeline that automates the generation of context-, and location-appropriate social navigation scenarios, ready for simulation. Our pipeline transforms simple scenario metadata into detailed textual scenarios, infers pedestrian and robot trajectories, and simulates pedestrian behaviors, which enables more controlled evaluation. We leverage the social reasoning and code-generation capabilities of Large Language Models (LLMs) to streamline scenario generation and translation. Our experiments show that our pipeline produces realistic scenarios and significantly improves scenario translation over naive LLM prompting. Additionally, we present initial feedback from a usability study with social navigation experts and a case-study demonstrating a scenario-based evaluation of three navigation algorithms.
Related papers
- LeGEND: A Top-Down Approach to Scenario Generation of Autonomous Driving Systems Assisted by Large Language Models [9.841914333647631]
We propose LeGEND, that features a top-down fashion of scenario generation.
It starts with abstract functional scenarios, and then steps downwards to logical and concrete scenarios.
Unlike logical scenarios that can be formally described, functional scenarios are often documented in natural languages.
arXiv Detail & Related papers (2024-09-16T08:01:21Z) - Online Context Learning for Socially-compliant Navigation [49.609656402450746]
This letter introduces an online context learning method that aims to empower robots to adapt to new social environments online.
Experiments using a community-wide simulator show that our method outperforms the state-of-the-art ones.
arXiv Detail & Related papers (2024-06-17T12:59:13Z) - PREDILECT: Preferences Delineated with Zero-Shot Language-based
Reasoning in Reinforcement Learning [2.7387720378113554]
Preference-based reinforcement learning (RL) has emerged as a new field in robot learning.
We use the zero-shot capabilities of a large language model (LLM) to reason from the text provided by humans.
In both a simulated scenario and a user study, we reveal the effectiveness of our work by analyzing the feedback and its implications.
arXiv Detail & Related papers (2024-02-23T16:30:05Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - Principles and Guidelines for Evaluating Social Robot Navigation
Algorithms [44.51586279645062]
Social robot navigation is difficult to evaluate because it involves dynamic human agents and their perceptions of the appropriateness of robot behavior.
Our contributions include (a) a definition of a socially navigating robot as one that respects the principles of safety, comfort, legibility, politeness, social competency, agent understanding, proactivity, and responsiveness to context, (b) guidelines for the use of metrics, development of scenarios, benchmarks, datasets, and simulators to evaluate social navigation, and (c) a social navigation metrics framework to make it easier to compare results from different simulators, robots and datasets.
arXiv Detail & Related papers (2023-06-29T07:31:43Z) - Surrogate Assisted Generation of Human-Robot Interaction Scenarios [14.548073522259248]
We show that surrogate assisted scenario generation efficiently synthesizes diverse datasets of challenging scenarios.
We demonstrate that these failures are reproducible in real-world interactions.
arXiv Detail & Related papers (2023-04-26T19:11:56Z) - An Application of Scenario Exploration to Find New Scenarios for the
Development and Testing of Automated Driving Systems in Urban Scenarios [2.480533141352916]
This work aims to find relevant, interesting, or critical parameter sets within logical scenarios by utilizing Bayes optimization and Gaussian processes.
A list of ideas this work leads to and should be investigated further is presented.
arXiv Detail & Related papers (2022-05-17T09:47:32Z) - CausalCity: Complex Simulations with Agency for Causal Discovery and
Reasoning [68.74447489372037]
We present a high-fidelity simulation environment that is designed for developing algorithms for causal discovery and counterfactual reasoning.
A core component of our work is to introduce textitagency, such that it is simple to define and create complex scenarios.
We perform experiments with three state-of-the-art methods to create baselines and highlight the affordances of this environment.
arXiv Detail & Related papers (2021-06-25T00:21:41Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z) - The Chef's Hat Simulation Environment for Reinforcement-Learning-Based
Agents [54.63186041942257]
We propose a virtual simulation environment that implements the Chef's Hat card game, designed to be used in Human-Robot Interaction scenarios.
This paper provides a controllable and reproducible scenario for reinforcement-learning algorithms.
arXiv Detail & Related papers (2020-03-12T15:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.