Quantum Many-Body Lattice C-R-T Symmetry: Fractionalization, Anomaly, and Symmetric Mass Generation
- URL: http://arxiv.org/abs/2412.19691v1
- Date: Fri, 27 Dec 2024 15:36:31 GMT
- Title: Quantum Many-Body Lattice C-R-T Symmetry: Fractionalization, Anomaly, and Symmetric Mass Generation
- Authors: Yang-Yang Li, Juven Wang, Yi-Zhuang You,
- Abstract summary: We study the anomaly of C-R-T-internal symmetry in all spacetime dimensions.
We find that either 8 copies of staggered Majorana fermions or 4 copies of staggered Dirac fermions admit SMG.
- Score: 1.8109739961560658
- License:
- Abstract: Charge conjugation (C), mirror reflection (R), and time reversal (T) symmetries, along with internal symmetries, are essential for massless Majorana and Dirac fermions. These symmetries are sufficient to rule out potential fermion bilinear mass terms, thereby establishing a gapless free fermion fixed point phase, pivotal for symmetric mass generation (SMG) transition. In this work, we systematically study the anomaly of C-R-T-internal symmetry in all spacetime dimensions by analyzing the projective representation (i.e. the fractionalization) of the C-R-T-internal symmetry group in the quantum many-body Hilbert space on the lattice. By discovering the fermion-flavor-number-dependent C-R-T-internal symmetry's anomaly structure, we demonstrate an alternative way to derive the minimal flavor number for SMG, which shows consistency with known results from K\"ahler-Dirac fermion or cobordism classification. Our findings reveal that, in general spatial dimensions, either 8 copies of staggered Majorana fermions or 4 copies of staggered Dirac fermions admit SMG. By directly searching for 4-fermion interactions that form commuting stabilizers respecting all symmetry constraints, we can prove the explicit SMG gapping retained a unique ground state in the codespace. Furthermore, we establish the correspondence between the symmetry operators of staggered fermions and free fermions, which is instrumental in facilitating the analysis of symmetry fractionalization at the field theory level.
Related papers
- Predicting symmetries of quantum dynamics with optimal samples [41.42817348756889]
Identifying symmetries in quantum dynamics is a crucial challenge with profound implications for quantum technologies.
We introduce a unified framework combining group representation theory and subgroup hypothesis testing to predict these symmetries with optimal efficiency.
We prove that parallel strategies achieve the same performance as adaptive or indefinite-causal-order protocols.
arXiv Detail & Related papers (2025-02-03T15:57:50Z) - Hilbert space geometry and quantum chaos [39.58317527488534]
We consider the symmetric part of the QGT for various multi-parametric random matrix Hamiltonians.
We find for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect.
arXiv Detail & Related papers (2024-11-18T19:00:17Z) - Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Symmetry enforced entanglement in maximally mixed states [3.5602863178766966]
Entanglement in quantum many-body systems is typically fragile to interactions with the environment.
We analyze the entanglement and correlations of the maximally mixed state in the invariant sector.
For all Abelian symmetries, the MMIS is separable, and for all non-Abelian symmetries, the MMIS is entangled.
arXiv Detail & Related papers (2024-06-12T18:00:00Z) - Interacting chiral fermions on the lattice with matrix product operator norms [37.69303106863453]
We develop a Hamiltonian formalism for simulating interacting chiral fermions on the lattice.
The fermion doubling problem is circumvented by constructing a Fock space endowed with a semi-definite norm.
We demonstrate that the scaling limit of the free model recovers the chiral fermion field.
arXiv Detail & Related papers (2024-05-16T17:46:12Z) - On a Relation among Bi-orthogonal system, Quadratic Non-Hermitian Boson
operators with real spectrum and Partial PT symmetry in Fock Space [0.0]
A new symmetry called partial PT symmetry has been considered for non-hermitian quadratic boson operators obtained from a bi-orthogonal set of vectors in C2.
The symmetry behaviour has been understood in Fock space considered as a Reproducing Kernel Hilbert Space(RKHS)
arXiv Detail & Related papers (2022-06-03T09:42:37Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Observation of dynamical topology in 1D [0.0]
We realize the 1D bipartite Rice-Mele (RM) lattice using ultracold $87$Rb and focus on lattice configurations possessing various combinations of chiral, time-reversal and particle-hole symmetries.
We quenched between configurations and used a form of quantum state tomography, enabled by diabatically tuning lattice parameters, to directly follow the time evolution of the Zak phase as well as a chiral winding number.
arXiv Detail & Related papers (2022-03-14T19:07:43Z) - One-dimensional symmetric phases protected by frieze symmetries [0.0]
We make a systematic study of symmetry-protected topological gapped phases of quantum spin chains in the presence of the frieze space groups in one dimension using matrix product states.
We identify seventeen distinct non-trivial phases, define canonical forms, and compare the topological indices obtained from the MPS analysis with the group cohomological predictions.
arXiv Detail & Related papers (2022-02-25T18:41:26Z) - Chiral Dirac-like fermion in spin-orbit-free antiferromagnetic
semimetals [21.85167942898987]
Dirac semimetal is a phase of matter, whose elementary excitation is described by the relativistic Dirac equation.
Inspired by the flavor symmetry in particle physics, we propose a massless Dirac-like equation yet linking two Weyl fields with the identical chirality.
Our work reveals a counterpart of the flavor symmetry in magnetic electronic systems, leading to further possibilities of emergent phenomena in quantum materials.
arXiv Detail & Related papers (2021-07-21T09:56:14Z) - Unwinding Fermionic SPT Phases: Supersymmetry Extension [0.0]
We show how 1+1-dimensional fermionic symmetry-protected topological states can be protected by supersymmetry.
The extended projective global symmetry on the boundary can become supersymmetric in a specific sense.
This also means we can uplift and remove certain exotic fermionic anomalies.
arXiv Detail & Related papers (2020-11-27T18:59:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.