An Integrated Optimization and Deep Learning Pipeline for Predicting Live Birth Success in IVF Using Feature Optimization and Transformer-Based Models
- URL: http://arxiv.org/abs/2412.19696v1
- Date: Fri, 27 Dec 2024 15:46:59 GMT
- Title: An Integrated Optimization and Deep Learning Pipeline for Predicting Live Birth Success in IVF Using Feature Optimization and Transformer-Based Models
- Authors: Arezoo Borji, Hossam Haick, Birgit Pohn, Antonia Graf, Jana Zakall, S M Ragib Shahriar Islam, Gernot Kronreif, Daniel Kovatchki, Heinz Strohmer, Sepideh Hatamikia,
- Abstract summary: This study develops a robust artificial intelligence pipeline aimed at predicting live birth outcomes in IVF treatments.
The pipeline uses anonymized data from 2010 to 2018 from the Human Fertilization and Embryology Authority (HFEA)
- Score: 0.0
- License:
- Abstract: In vitro fertilization (IVF) is a widely utilized assisted reproductive technology, yet predicting its success remains challenging due to the multifaceted interplay of clinical, demographic, and procedural factors. This study develops a robust artificial intelligence (AI) pipeline aimed at predicting live birth outcomes in IVF treatments. The pipeline uses anonymized data from 2010 to 2018, obtained from the Human Fertilization and Embryology Authority (HFEA). We evaluated the prediction performance of live birth success as a binary outcome (success/failure) by integrating different feature selection methods, such as principal component analysis (PCA) and particle swarm optimization (PSO), with different traditional machine learning-based classifiers including random forest (RF) and decision tree, as well as deep learning-based classifiers including custom transformer-based model and a tab transformer model with an attention mechanism. Our research demonstrated that the best performance was achieved by combining PSO for feature selection with the TabTransformer-based deep learning model, yielding an accuracy of 99.50% and an AUC of 99.96%, highlighting its significant performance to predict live births. This study establishes a highly accurate AI pipeline for predicting live birth outcomes in IVF, demonstrating its potential to enhance personalized fertility treatments.
Related papers
- ILETIA: An AI-enhanced method for individualized trigger-oocyte pickup interval estimation of progestin-primed ovarian stimulation protocol [19.462250530822907]
In vitro fertilization-embryo transfer (IVF-ET) is one of the most prevalent treatments for infertility.
During an IVF-ET cycle, the time interval between trigger shot and oocyte pickup (OPU) is a pivotal period for follicular maturation.
We propose ILETIA, the first machine learning-based method that could predict the optimal trigger-OPU interval for patients receiving progestin-primed ovarian stimulation (PPOS) protocol.
arXiv Detail & Related papers (2025-01-25T08:08:17Z) - Embryo 2.0: Merging Synthetic and Real Data for Advanced AI Predictions [69.07284335967019]
We train two generative models using two datasets, one created and made publicly available, and one existing public dataset.
We generate synthetic embryo images at various cell stages, including 2-cell, 4-cell, 8-cell, morula, and blastocyst.
These were combined with real images to train classification models for embryo cell stage prediction.
arXiv Detail & Related papers (2024-12-02T08:24:49Z) - Multimodal Learning for Embryo Viability Prediction in Clinical IVF [24.257300904706902]
In clinical In-Vitro Fertilization (IVF), identifying the most viable embryo for transfer is important to increasing the likelihood of a successful pregnancy.
Traditionally, this process involves embryologists manually assessing embryos' static morphological features at specific intervals using light microscopy.
This manual evaluation is not only time-intensive and costly, due to the need for expert analysis, but also inherently subjective, leading to variability in the selection process.
arXiv Detail & Related papers (2024-10-21T01:58:26Z) - Enhanced Prediction of Ventilator-Associated Pneumonia in Patients with Traumatic Brain Injury Using Advanced Machine Learning Techniques [0.0]
Ventilator-associated pneumonia (VAP) in traumatic brain injury (TBI) patients poses a significant mortality risk.
Timely detection and prognostication of VAP in TBI patients are crucial to improve patient outcomes and alleviate the strain on healthcare resources.
We implemented six machine learning models using the MIMIC-III database.
arXiv Detail & Related papers (2024-08-02T09:44:18Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
A major challenge for AI-driven drug discovery is the scarcity of high-quality data.
We develop a formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously.
Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks.
arXiv Detail & Related papers (2024-04-16T07:42:55Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - An Improved Model Ensembled of Different Hyper-parameter Tuned Machine
Learning Algorithms for Fetal Health Prediction [1.332560004325655]
We propose a robust ensemble model called ensemble of tuned Support Vector Machine and ExtraTrees for predicting fetal health.
Our proposed ETSE model outperformed the other models with 100% precision, 100% recall, 100% F1-score, and 99.66% accuracy.
arXiv Detail & Related papers (2023-05-26T16:40:44Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Robust and generalizable embryo selection based on artificial
intelligence and time-lapse image sequences [0.0]
We investigate how a deep learning-based embryo selection model using only time-lapse image sequences performs across different patient ages and clinical conditions.
The model was trained and evaluated based on a large dataset from 18 IVF centers consisting of 115,832 embryos.
The fully automated iDAScore v1.0 model was shown to perform at least as good as a state-of-the-art manual embryo selection model.
arXiv Detail & Related papers (2021-03-12T13:36:30Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
We present a probabilistic programmed deep kernel learning approach to personalized, predictive modeling of neurodegenerative diseases.
Our analysis considers a spectrum of neural and symbolic machine learning approaches.
We run evaluations on the problem of Alzheimer's disease prediction, yielding results that surpass deep learning.
arXiv Detail & Related papers (2020-09-16T15:16:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.