Multimodal Learning for Embryo Viability Prediction in Clinical IVF
- URL: http://arxiv.org/abs/2410.15581v1
- Date: Mon, 21 Oct 2024 01:58:26 GMT
- Title: Multimodal Learning for Embryo Viability Prediction in Clinical IVF
- Authors: Junsik Kim, Zhiyi Shi, Davin Jeong, Johannes Knittel, Helen Y. Yang, Yonghyun Song, Wanhua Li, Yicong Li, Dalit Ben-Yosef, Daniel Needleman, Hanspeter Pfister,
- Abstract summary: In clinical In-Vitro Fertilization (IVF), identifying the most viable embryo for transfer is important to increasing the likelihood of a successful pregnancy.
Traditionally, this process involves embryologists manually assessing embryos' static morphological features at specific intervals using light microscopy.
This manual evaluation is not only time-intensive and costly, due to the need for expert analysis, but also inherently subjective, leading to variability in the selection process.
- Score: 24.257300904706902
- License:
- Abstract: In clinical In-Vitro Fertilization (IVF), identifying the most viable embryo for transfer is important to increasing the likelihood of a successful pregnancy. Traditionally, this process involves embryologists manually assessing embryos' static morphological features at specific intervals using light microscopy. This manual evaluation is not only time-intensive and costly, due to the need for expert analysis, but also inherently subjective, leading to variability in the selection process. To address these challenges, we develop a multimodal model that leverages both time-lapse video data and Electronic Health Records (EHRs) to predict embryo viability. One of the primary challenges of our research is to effectively combine time-lapse video and EHR data, owing to their inherent differences in modality. We comprehensively analyze our multimodal model with various modality inputs and integration approaches. Our approach will enable fast and automated embryo viability predictions in scale for clinical IVF.
Related papers
- Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Exploring the Role of Explainability in AI-Assisted Embryo Selection [0.0]
In Vitro Fertilization is among the most widespread treatments for infertility.
One of its main challenges is the evaluation and selection of embryo for implantation.
Deep learning based methods are gaining attention, but their opaque nature compromises their acceptance in the clinical context.
arXiv Detail & Related papers (2023-08-01T09:46:31Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Predicting Adverse Neonatal Outcomes for Preterm Neonates with
Multi-Task Learning [51.487856868285995]
We first analyze the correlations between three adverse neonatal outcomes and then formulate the diagnosis of multiple neonatal outcomes as a multi-task learning (MTL) problem.
In particular, the MTL framework contains shared hidden layers and multiple task-specific branches.
arXiv Detail & Related papers (2023-03-28T00:44:06Z) - Towards deep learning-powered IVF: A large public benchmark for
morphokinetic parameter prediction [0.0]
We describe a fully annotated dataset of 756 videos of developing embryos, for a total of 337k images.
We apply ResNet, LSTM, and ResNet-3D architectures to our dataset and demonstrate that they overperform algorithmic approaches to automatically annotate stage development phases.
This is the first step towards deep learning-powered IVF.
arXiv Detail & Related papers (2022-03-01T15:13:21Z) - Robust and generalizable embryo selection based on artificial
intelligence and time-lapse image sequences [0.0]
We investigate how a deep learning-based embryo selection model using only time-lapse image sequences performs across different patient ages and clinical conditions.
The model was trained and evaluated based on a large dataset from 18 IVF centers consisting of 115,832 embryos.
The fully automated iDAScore v1.0 model was shown to perform at least as good as a state-of-the-art manual embryo selection model.
arXiv Detail & Related papers (2021-03-12T13:36:30Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Automated Measurements of Key Morphological Features of Human Embryos
for IVF [22.121065811969473]
Time-lapse microscopy provides clinicians with a wealth of information for selecting embryos.
Here, we automate feature extraction of time-lapse microscopy of human embryos with a machine-learning pipeline of five convolutional neural networks (CNNs)
Our approach greatly speeds up the measurement of quantitative, biologically relevant features that may aid in embryo selection.
arXiv Detail & Related papers (2020-05-29T20:27:17Z) - Deep learning mediated single time-point image-based prediction of
embryo developmental outcome at the cleavage stage [1.6753684438635652]
Cleavage stage transfers are beneficial for patients with poor prognosis and at fertility centers in resource-limited settings.
Time-lapse imaging systems have been proposed as possible solutions, but they are cost-prohibitive and require bulky and expensive hardware.
Here, we report an automated system for classification and selection of human embryos at the cleavage stage using a trained CNN combined with a genetic algorithm.
arXiv Detail & Related papers (2020-05-21T21:21:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.