論文の概要: Toward Adaptive Reasoning in Large Language Models with Thought Rollback
- arxiv url: http://arxiv.org/abs/2412.19707v1
- Date: Fri, 27 Dec 2024 16:02:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:29:30.973042
- Title: Toward Adaptive Reasoning in Large Language Models with Thought Rollback
- Title(参考訳): 思考転がりを伴う大規模言語モデルの適応推論に向けて
- Authors: Sijia Chen, Baochun Li,
- Abstract要約: 本稿では,Thought Rollback (TR) と呼ばれる新しい推論フレームワークを提案する。
TRにより、大規模言語モデル(LLM)は、幻覚下での問題解決に向けた効果的な推論を維持しつつ、思考構造を適応的に構築することができる」。
- 参考スコア(独自算出の注目度): 33.714789952452094
- License:
- Abstract: Large language models (LLMs) have been routinely used to solve various tasks using step-by-step reasoning. However, the structure of intermediate reasoning steps, or thoughts, is rigid and unidirectional, such as chains, trees, or acyclic-directed graphs. Consequently, the resulting inflexible and forward-only reasoning may not address challenging tasks and fail when the LLM frequently gives false responses, i.e., ``hallucinations''. This paper proposes a new reasoning framework, called Thought Rollback (TR), allowing LLMs to adaptively build thought structure while maintaining effective reasoning toward problem-solving under ``hallucinations''. The core mechanism of TR is rolling back thoughts, which allows LLMs to perform error analysis on thoughts, and thus roll back to any previously mistaken thought for revision. Subsequently, by including such trial-and-error in the prompt to guide the LLM, each rollback leads to one more reliable reasoning path. Therefore, starting with a simple prompt without human annotations, LLM with TR adaptively and gradually explores thoughts for a correct solution. Comprehensive experiments on mathematical problems and multi-task reasoning demonstrate the state-of-the-art performance of TR in terms of problem-solving rate and interaction cost. For instance, the solving rate of GPT-4 with TR outperforms the current best by $9\%$ on the MATH dataset.
- Abstract(参考訳): 大規模言語モデル (LLM) は、ステップバイステップ推論を用いて様々なタスクを解決するために日常的に使われている。
しかし、中間推論ステップや思考の構造は、鎖、木、あるいは非巡回グラフのような厳密で一方向である。
したがって、結果の柔軟性と前方のみの推論は困難な問題に対処せず、LLMがしばしば偽の応答、すなわち `hallucinations'' を与えると失敗する可能性がある。
本稿では,「ハロシン化」の下での問題解決に向けた効果的な推論を維持しつつ,LLMが思考構造を適応的に構築することを可能にする,Thought Rollback (TR) と呼ばれる新たな推論フレームワークを提案する。
TRの中核的なメカニズムは思考をロールバックし、LLMは思考の誤り解析を行なえるので、以前は間違っていた思考をリビジョンに戻すことができる。
その後、LSMを誘導するプロンプトにこのような試行錯誤を組み込むことで、各ロールバックはより信頼できる推論経路へと導かれる。
したがって、人間のアノテーションを使わずに簡単なプロンプトから始めて、TRを用いたLLMは適応的に正しい解の思考を徐々に探求する。
数学的問題とマルチタスク推論に関する総合的な実験は、問題解決率と相互作用コストの観点から、TRの最先端性能を示す。
例えば、TRによる GPT-4 の解法率は、MATH データセット上での現在の最高値を 9 % 上回る。
関連論文リスト
- SoftCoT: Soft Chain-of-Thought for Efficient Reasoning with LLMs [48.28847964704554]
CoT(Chain-of-Thought)推論により、LLM(Large Language Models)は複雑な推論タスクを解くことができる。
本稿では,LLMの変更を必要としない連続空間推論のための新しい手法を提案する。
論文 参考訳(メタデータ) (2025-02-17T18:52:29Z) - Unveiling the Magic of Code Reasoning through Hypothesis Decomposition and Amendment [54.62926010621013]
我々は,大規模言語モデルの推論能力に対する新たな視点を提供するために,新しいタスクであるコード推論を導入する。
論理的推論の確立した形式に基づいて3つのメタベンチマークを要約し、8つの特定のベンチマークタスクにインスタンス化する。
本稿では,人間の複雑な問題解決手法に触発された新たな経路探索パイプラインを提案する。
論文 参考訳(メタデータ) (2025-02-17T10:39:58Z) - Investigating the Shortcomings of LLMs in Step-by-Step Legal Reasoning [34.427730009102966]
推論誤りを特定し,LLMの性能を評価するための自動評価フレームワークを開発した。
我々の研究は、論理集約的な複雑なタスクに対する推論チェーンの詳細なエラー解析に使用できる評価フレームワークとしても機能する。
論文 参考訳(メタデータ) (2025-02-08T19:49:32Z) - Critical-Questions-of-Thought: Steering LLM reasoning with Argumentative Querying [0.3659498819753633]
State-of-the-art Large Language Model (LLM) は論理的および数学的推論を行う際にも苦戦している。
本稿では、議論論に関する文献からの批判的質問の概念を利用し、特にトゥールミンの議論モデルに焦点を当てる。
これらの重要な質問を取り入れることで,LLMの推論能力が向上することを示す。
論文 参考訳(メタデータ) (2024-12-19T18:51:30Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
最近の研究は、複数の推論チェーンをサンプリングし、応答周波数に基づいてアンサンブルすることで、Large Language Models(LLMs)の推論性能を向上させる。
このアプローチは、正しい答えが少数派である場合に失敗する。
階層的推論集約フレームワークAoRを導入し、推論連鎖の評価に基づいて回答を選択する。
論文 参考訳(メタデータ) (2024-05-21T17:12:19Z) - Large Language Models as an Indirect Reasoner: Contrapositive and Contradiction for Automated Reasoning [74.90592233107712]
本稿では,直接推論 (DR) と間接推論 (IR) を並列な複数の推論経路として考慮し,最終解を導出する直接間接推論 (DIR) 手法を提案する。
我々のDIR法は単純だが有効であり、既存のCoT法と簡単に統合できる。
論文 参考訳(メタデータ) (2024-02-06T03:41:12Z) - Fill in the Blank: Exploring and Enhancing LLM Capabilities for Backward Reasoning in Math Word Problems [17.80128896525717]
後向きの推論は 比較的未調査です
後方推論は 前方推論の「逆」と見なすことができます
性能改善のための3つの異なる前方推論戦略のバリエーションを提案する。
論文 参考訳(メタデータ) (2023-10-03T12:03:06Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
複数のエージェントが"tit for tat"の状態で議論を表現するマルチエージェント議論(MAD)フレームワークを提案し、審査員が議論プロセスを管理して最終解を得る。
我々のフレームワークは、深い熟考を必要とするタスクに役立ちそうなLSMにおける散発的思考を奨励する。
論文 参考訳(メタデータ) (2023-05-30T15:25:45Z) - RCOT: Detecting and Rectifying Factual Inconsistency in Reasoning by
Reversing Chain-of-Thought [56.558892336235914]
Reversing Chain-of-Thought (RCoT) は、大規模言語モデルの推論能力を改善する新しい手法である。
RCoTは生成したソリューションにおける事実の不整合を自動的に検出し、修正する。
手書きのきめ細かいフィードバックがLLMの推論能力を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-05-19T08:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。