Neighbor Does Matter: Density-Aware Contrastive Learning for Medical Semi-supervised Segmentation
- URL: http://arxiv.org/abs/2412.19871v1
- Date: Fri, 27 Dec 2024 13:57:57 GMT
- Title: Neighbor Does Matter: Density-Aware Contrastive Learning for Medical Semi-supervised Segmentation
- Authors: Feilong Tang, Zhongxing Xu, Ming Hu, Wenxue Li, Peng Xia, Yiheng Zhong, Hanjun Wu, Jionglong Su, Zongyuan Ge,
- Abstract summary: We argue that supervisory information can be directly extracted from the geometry of the feature space.
Inspired by the density-based clustering hypothesis, we propose using feature density to locate sparse regions within feature clusters.
Our method constructs density-aware neighbor graphs using labeled and unlabeled data samples to estimate feature density and locate sparse regions.
- Score: 17.69408044083565
- License:
- Abstract: In medical image analysis, multi-organ semi-supervised segmentation faces challenges such as insufficient labels and low contrast in soft tissues. To address these issues, existing studies typically employ semi-supervised segmentation techniques using pseudo-labeling and consistency regularization. However, these methods mainly rely on individual data samples for training, ignoring the rich neighborhood information present in the feature space. In this work, we argue that supervisory information can be directly extracted from the geometry of the feature space. Inspired by the density-based clustering hypothesis, we propose using feature density to locate sparse regions within feature clusters. Our goal is to increase intra-class compactness by addressing sparsity issues. To achieve this, we propose a Density-Aware Contrastive Learning (DACL) strategy, pushing anchored features in sparse regions towards cluster centers approximated by high-density positive samples, resulting in more compact clusters. Specifically, our method constructs density-aware neighbor graphs using labeled and unlabeled data samples to estimate feature density and locate sparse regions. We also combine label-guided co-training with density-guided geometric regularization to form complementary supervision for unlabeled data. Experiments on the Multi-Organ Segmentation Challenge dataset demonstrate that our proposed method outperforms state-of-the-art methods, highlighting its efficacy in medical image segmentation tasks.
Related papers
- Towards the Uncharted: Density-Descending Feature Perturbation for Semi-supervised Semantic Segmentation [51.66997548477913]
We propose a novel feature-level consistency learning framework named Density-Descending Feature Perturbation (DDFP)
Inspired by the low-density separation assumption in semi-supervised learning, our key insight is that feature density can shed a light on the most promising direction for the segmentation classifier to explore.
The proposed DDFP outperforms other designs on feature-level perturbations and shows state of the art performances on both Pascal VOC and Cityscapes dataset.
arXiv Detail & Related papers (2024-03-11T06:59:05Z) - GFDC: A Granule Fusion Density-Based Clustering with Evidential
Reasoning [22.526274021556755]
density-based clustering algorithms are widely applied because they can detect clusters with arbitrary shapes.
This paper proposes a granule fusion density-based clustering with evidential reasoning (GFDC)
Both local and global densities of samples are measured by a sparse degree metric first.
Then information granules are generated in high-density and low-density regions, assisting in processing clusters with significant density differences.
arXiv Detail & Related papers (2023-05-20T06:27:31Z) - In Defense of Core-set: A Density-aware Core-set Selection for Active
Learning [3.6753274024067593]
In a real-world active learning scenario, considering the diversity of the selected samples is crucial.
In this work, we analyze the feature space through the lens of the density and propose a density-aware core-set (DACS)
The strategy is to estimate the density of the unlabeled samples and select diverse samples mainly from sparse regions.
arXiv Detail & Related papers (2022-06-10T01:47:49Z) - Density-Based Clustering with Kernel Diffusion [59.4179549482505]
A naive density corresponding to the indicator function of a unit $d$-dimensional Euclidean ball is commonly used in density-based clustering algorithms.
We propose a new kernel diffusion density function, which is adaptive to data of varying local distributional characteristics and smoothness.
arXiv Detail & Related papers (2021-10-11T09:00:33Z) - Non-Salient Region Object Mining for Weakly Supervised Semantic
Segmentation [64.2719590819468]
We propose a non-salient region object mining approach for weakly supervised semantic segmentation.
A potential object mining module is proposed to reduce the false-negative rate in pseudo labels.
Our non-salient region masking module helps further discover the objects in the non-salient region.
arXiv Detail & Related papers (2021-03-26T16:44:03Z) - A Teacher-Student Framework for Semi-supervised Medical Image
Segmentation From Mixed Supervision [62.4773770041279]
We develop a semi-supervised learning framework based on a teacher-student fashion for organ and lesion segmentation.
We show our model is robust to the quality of bounding box and achieves comparable performance compared with full-supervised learning methods.
arXiv Detail & Related papers (2020-10-23T07:58:20Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z) - Density-Aware Graph for Deep Semi-Supervised Visual Recognition [102.9484812869054]
Semi-supervised learning (SSL) has been extensively studied to improve the generalization ability of deep neural networks for visual recognition.
This paper proposes to solve the SSL problem by building a novel density-aware graph, based on which the neighborhood information can be easily leveraged.
arXiv Detail & Related papers (2020-03-30T02:52:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.