論文の概要: Adaptive Parameter-Efficient Federated Fine-Tuning on Heterogeneous Devices
- arxiv url: http://arxiv.org/abs/2412.20004v1
- Date: Sat, 28 Dec 2024 04:00:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:04:24.420613
- Title: Adaptive Parameter-Efficient Federated Fine-Tuning on Heterogeneous Devices
- Title(参考訳): 不均一デバイスにおける適応パラメータ効率の良いフェデレーションファインチューニング
- Authors: Jun Liu, Yunming Liao, Hongli Xu, Yang Xu, Jianchun Liu, Chen Qian,
- Abstract要約: Federated Fine-tuning (FedFT) は、事前訓練された言語モデルを分散的に微調整するために提案されている。
LEGENDと呼ばれる新しいLoRAベースのFedFTフレームワークを提案する。
我々は,LoRA深度とランク分布の結合関係を解析し,不均一デバイスに対する効率的なLoRA構成アルゴリズムを設計する。
- 参考スコア(独自算出の注目度): 24.725928966071212
- License:
- Abstract: Federated fine-tuning (FedFT) has been proposed to fine-tune the pre-trained language models in a distributed manner. However, there are two critical challenges for efficient FedFT in practical applications, i.e., resource constraints and system heterogeneity. Existing works rely on parameter-efficient fine-tuning methods, e.g., low-rank adaptation (LoRA), but with major limitations. Herein, based on the inherent characteristics of FedFT, we observe that LoRA layers with higher ranks added close to the output help to save resource consumption while achieving comparable fine-tuning performance. Then we propose a novel LoRA-based FedFT framework, termed LEGEND, which faces the difficulty of determining the number of LoRA layers (called, LoRA depth) and the rank of each LoRA layer (called, rank distribution). We analyze the coupled relationship between LoRA depth and rank distribution, and design an efficient LoRA configuration algorithm for heterogeneous devices, thereby promoting fine-tuning efficiency. Extensive experiments are conducted on a physical platform with 80 commercial devices. The results show that LEGEND can achieve a speedup of 1.5-2.8$\times$ and save communication costs by about 42.3% when achieving the target accuracy, compared to the advanced solutions.
- Abstract(参考訳): Federated Fine-tuning (FedFT) は、事前訓練された言語モデルを分散的に微調整するために提案されている。
しかし、FedFTを効果的に活用するには、リソース制約とシステム不均一性の2つの重要な課題がある。
既存の研究はパラメータ効率のよい微調整法、例えばローランク適応(LoRA)に依存しているが、大きな制限がある。
ここでは,FedFTの特性に基づいて,出力に近く高いランクのLoRA層が資源消費の削減に役立ちながら,同等の微調整性能を実現していることを示す。
LEGENDと呼ばれる新しいLORAベースのFedFTフレームワークを提案し、LORA層数(LoRA深さ)と各LORA層数(ランク分布)を決定するのが困難である。
我々は、LoRA深度とランク分布の結合関係を解析し、異種デバイスのための効率的なLoRA構成アルゴリズムを設計し、微調整効率を向上する。
大規模な実験は、80の商用デバイスを備えた物理プラットフォーム上で実施される。
その結果、LEGENDは1.5-2.8$\times$で通信コストを約42.3%削減できることがわかった。
関連論文リスト
- LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement [5.162783756846019]
ファンデーションモデル(FM)は、タスク固有の微調整によって、多様なタスクにまたがる強力なパフォーマンスを実現する。
低ランク適応 (LoRA) のようなローランク適応 (LoRA) 手法は、少ないパラメータをチューニングするための低ランク行列を導入することで、このコストを削減する。
LoRA-FAIRは計算と通信の効率を維持し、最先端の手法よりも優れた性能が得られる。
論文 参考訳(メタデータ) (2024-11-22T14:19:01Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
低ランク適応 (LoRA) は、メモリ要求を低減し、LLMのパラメータ効率の高い微調整法である。
本稿では,LoRA最適化のための適応行列プレコンディショニング手法であるLoRA-RITEを紹介する。
論文 参考訳(メタデータ) (2024-10-27T22:57:12Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - Exact Aggregation for Federated and Efficient Fine-Tuning of Foundation Models [5.1613368481802455]
Low-Rank Adaptation (LoRA) は基礎モデルの効率的な微調整技術として人気がある。
凍結重量行列に残留誤差項を付加するFederated Exact LoRA(FedExLoRA)を提案する。
提案手法は,LoRAの効率を保ちながら,計算と通信のオーバーヘッドを最小限に抑えた正確な更新を実現する。
論文 参考訳(メタデータ) (2024-10-12T08:22:44Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) は、ファインチューニングモデルの一般的なテクニックである。
LoRAは、フルパラメータの微調整と比較すると、しばしば実行されます。
本稿では,LoRA手法の適応率を厳密に分析するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-10T18:51:53Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
LoRAとしても知られる低ランク適応は、基礎モデルのパラメータ効率の細かい調整のための顕著な手法として登場した。
計算効率にもかかわらず、LoRAは完全な微調整に比べて性能が劣っている。
低ランク行列の勾配を戦略的に調整することでLoRAの性能を向上させる手法であるLoRA-Proを導入する。
論文 参考訳(メタデータ) (2024-07-25T17:57:12Z) - Mixture of LoRA Experts [87.50120181861362]
本稿では,階層的制御と未分散分岐選択を利用する LoRA Experts (MoLE) アプローチを提案する。
MoLEアプローチは直接算術マージよりも優れたLoRA融合性能を実現する。
論文 参考訳(メタデータ) (2024-04-21T11:59:53Z) - Improving LoRA in Privacy-preserving Federated Learning [44.47315926976059]
ローランク適応(ローランク適応、LoRA)は、事前訓練された言語モデルにおける最も一般的なタスク固有パラメータ効率細調整(PEFT)手法の1つである。
本稿では,これらの課題を緩和するために,LoRAの効率的かつ効果的なフェデレートフリーズA LoRA(FFA-LoRA)を提案する。
論文 参考訳(メタデータ) (2024-03-18T23:20:08Z) - DoRA: Weight-Decomposed Low-Rank Adaptation [57.68678247436207]
本稿では,FTとLoRAの相違点を明らかにするために,新しい重み分解解析法を提案する。
本研究は、FTの学習能力に類似することを目的として、重量分解低ランク適応(DoRA)を提案する。
DoRAは、事前訓練された重量を、微調整のための大きさと方向の2つの構成要素に分解する。
論文 参考訳(メタデータ) (2024-02-14T17:59:34Z) - Heterogeneous LoRA for Federated Fine-tuning of On-Device Foundation
Models [20.707283766914017]
HetLoRAはクライアントデバイス間での不均一なランク付けを可能にし、これらの不均一なLoRAモジュールを効率的に集約し、配布する。
HetLoRAは同種LoRAに比べて収束速度と最終性能が向上する。
論文 参考訳(メタデータ) (2024-01-12T07:52:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。