論文の概要: Resource-Efficient Federated Fine-Tuning Large Language Models for Heterogeneous Data
- arxiv url: http://arxiv.org/abs/2503.21213v1
- Date: Thu, 27 Mar 2025 07:05:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:51:44.206616
- Title: Resource-Efficient Federated Fine-Tuning Large Language Models for Heterogeneous Data
- Title(参考訳): 不均一データのための資源効率の良いフェデレーションファインチューニング大言語モデル
- Authors: Jun Liu, Yunming Liao, Hongli Xu, Yang Xu,
- Abstract要約: フェデレートラーニング(Federated Learning)、すなわちフェデレーションラーニング(FedLLM)を通じて、さまざまな下流アプリケーションにLLMをプライバシ保護方式で適応させるための微調整大型言語モデル(LLM)が提案されている。
資源制約装置の微調整コストを低減するため、FedLLMにローランク適応(LoRA)を統合することにより、モデルパラメータの小さなサブセットのみを微調整することを提案した。
本稿では、これらの課題に対処するため、階層的なFedLoRAフレームワークであるHierFedLoRAを提案する。
- 参考スコア(独自算出の注目度): 16.844142562389443
- License:
- Abstract: Fine-tuning large language models (LLMs) via federated learning, i.e., FedLLM, has been proposed to adapt LLMs for various downstream applications in a privacy-preserving way. To reduce the fine-tuning costs on resource-constrained devices, FedLoRA is proposed to fine-tune only a small subset of model parameters by integrating low-rank adaptation (LoRA) into FedLLM. However, apart from resource constraints, there is still another critical challenge, i.e., data heterogeneity, severely hindering the implementation of FedLoRA in practical applications. Herein, inspired by the previous group-based federated learning paradigm, we propose a hierarchical FedLoRA framework, termed HierFedLoRA, to address these challenges. Specifically, HierFedLoRA partitions all devices into multiple near-IID groups and adjusts the intra-group aggregation frequency for each group to eliminate the negative effects of non-IID data. Meanwhile, to reduce the computation and communication cost, HierFedLoRA dynamically assigns diverse and suitable fine-tuning depth (i.e., the number of continuous fine-tuning layers from the output) for each group. HierFedLoRA explores jointly optimizing aggregation frequency and depth upon their coupled relationship to better enhance the performance of FedLoRA. Extensive experiments are conducted on a physical platform with 80 commercial devices. The results show that HierFedLoRA improves the final model accuracy by 1.6% to 4.2%, speeding up the fine-tuning process by at least 2.1$\times$, compared to the strong baselines.
- Abstract(参考訳): フェデレートラーニング(Federated Learning)、すなわちフェデレーションラーニング(FedLLM)を通じて、さまざまな下流アプリケーションにLLMをプライバシ保護方式で適応させるための微調整大型言語モデル(LLM)が提案されている。
資源制約装置の微調整コストを低減するため、FedLLMにローランク適応(LoRA)を統合することにより、モデルパラメータの小さなサブセットのみを微調整することを提案した。
しかし、リソースの制約とは別に、データ不均一性(データの不均一性)がFedLoRAの実用的実装を著しく妨げている、という重要な課題もある。
本稿では,従来のグループベースのフェデレーション学習パラダイムにヒントを得て,階層的なFedLoRAフレームワークであるHierFedLoRAを提案し,これらの課題に対処する。
具体的には、HierFedLoRAはすべてのデバイスを複数の近IIDグループに分割し、グループ内の集約周波数を調整することで、非IIDデータの負の効果を排除する。
一方、計算と通信コストを削減するため、HierFedLoRAはグループごとに多種多様な微調整深度(すなわち出力から連続的な微調整層の数)を動的に割り当てる。
HierFedLoRAは、FedLoRAの性能を向上させるために、結合関係におけるアグリゲーション周波数と深さを協調的に最適化する。
大規模な実験は、80の商用デバイスを備えた物理プラットフォーム上で実施される。
結果は、HierFedLoRAが最終モデルの精度を1.6%から4.2%改善し、強力なベースラインに比べて少なくとも2.1$\times$の微調整プロセスを高速化したことを示している。
関連論文リスト
- BeamLoRA: Beam-Constraint Low-Rank Adaptation [51.52097743781401]
Low-Rank Adaptation (LoRA) はパラメータ効率の良い微調整法として広く採用されている。
本研究では,各LoRAモジュールを,各ランクが潜在的サブソリューションに対応するビームとして概念化するビームロラを提案する。
論文 参考訳(メタデータ) (2025-02-19T10:33:22Z) - Adaptive Parameter-Efficient Federated Fine-Tuning on Heterogeneous Devices [24.725928966071212]
Federated Fine-tuning (FedFT) は、事前訓練された言語モデルを分散的に微調整するために提案されている。
LEGENDと呼ばれる新しいLoRAベースのFedFTフレームワークを提案する。
我々は,LoRA深度とランク分布の結合関係を解析し,不均一デバイスに対する効率的なLoRA構成アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-12-28T04:00:42Z) - LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement [5.162783756846019]
ファンデーションモデル(FM)は、タスク固有の微調整によって、多様なタスクにまたがる強力なパフォーマンスを実現する。
低ランク適応 (LoRA) のようなローランク適応 (LoRA) 手法は、少ないパラメータをチューニングするための低ランク行列を導入することで、このコストを削減する。
LoRA-FAIRは計算と通信の効率を維持し、最先端の手法よりも優れた性能が得られる。
論文 参考訳(メタデータ) (2024-11-22T14:19:01Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) は、ファインチューニングモデルの一般的なテクニックである。
LoRAは、フルパラメータの微調整と比較すると、しばしば実行されます。
本稿では,LoRA手法の適応率を厳密に分析するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-10T18:51:53Z) - FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low-Rank Adaptations [39.88985198467528]
ヘテロジニアスLoRAアダプタ上でのファインチューニングを可能にするFLORAと呼ばれる新しい手法を提案する。
我々のアプローチはノイズフリーであり、ヘテロジニアスなLoRAアダプタをシームレスにサポートしています。
論文 参考訳(メタデータ) (2024-09-09T18:21:23Z) - Improving LoRA in Privacy-preserving Federated Learning [44.47315926976059]
ローランク適応(ローランク適応、LoRA)は、事前訓練された言語モデルにおける最も一般的なタスク固有パラメータ効率細調整(PEFT)手法の1つである。
本稿では,これらの課題を緩和するために,LoRAの効率的かつ効果的なフェデレートフリーズA LoRA(FFA-LoRA)を提案する。
論文 参考訳(メタデータ) (2024-03-18T23:20:08Z) - Heterogeneous LoRA for Federated Fine-tuning of On-Device Foundation
Models [20.707283766914017]
HetLoRAはクライアントデバイス間での不均一なランク付けを可能にし、これらの不均一なLoRAモジュールを効率的に集約し、配布する。
HetLoRAは同種LoRAに比べて収束速度と最終性能が向上する。
論文 参考訳(メタデータ) (2024-01-12T07:52:07Z) - Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes [53.4856038354195]
事前訓練された大規模言語モデル(LLM)は、自然言語命令に対する応答性を改善するために微調整が必要である。
FedKSeedは、ランダムシードの有限セットによるゼロ階最適化を採用している。
サーバとクライアント間の通信要求を大幅に減らし、ランダムなシードをわずかに減らします。
論文 参考訳(メタデータ) (2023-12-11T13:03:21Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - Heterogeneous Federated Learning via Grouped Sequential-to-Parallel
Training [60.892342868936865]
フェデレートラーニング(Federated Learning, FL)は、プライバシ保護のためのコラボレーション機械学習パラダイムである。
本稿では,この課題に対処するため,データヘテロジニアス・ロバストFLアプローチであるFedGSPを提案する。
その結果,FedGSPは7つの最先端アプローチと比較して平均3.7%の精度向上を実現していることがわかった。
論文 参考訳(メタデータ) (2022-01-31T03:15:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。