論文の概要: OneKE: A Dockerized Schema-Guided LLM Agent-based Knowledge Extraction System
- arxiv url: http://arxiv.org/abs/2412.20005v2
- Date: Thu, 06 Feb 2025 10:37:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:31:05.475410
- Title: OneKE: A Dockerized Schema-Guided LLM Agent-based Knowledge Extraction System
- Title(参考訳): OneKE: Dockerized Schema-Guided LLM Agentベースの知識抽出システム
- Authors: Yujie Luo, Xiangyuan Ru, Kangwei Liu, Lin Yuan, Mengshu Sun, Ningyu Zhang, Lei Liang, Zhiqiang Zhang, Jun Zhou, Lanning Wei, Da Zheng, Haofen Wang, Huajun Chen,
- Abstract要約: OneKEは、ドッカー化されたスキーマ誘導知識抽出システムである。
Webと生のPDFブックから知識を抽出することができる。
諸藩(科学、ニュースなど)を支えている。
- 参考スコア(独自算出の注目度): 41.0804067287909
- License:
- Abstract: We introduce OneKE, a dockerized schema-guided knowledge extraction system, which can extract knowledge from the Web and raw PDF Books, and support various domains (science, news, etc.). Specifically, we design OneKE with multiple agents and a configure knowledge base. Different agents perform their respective roles, enabling support for various extraction scenarios. The configure knowledge base facilitates schema configuration, error case debugging and correction, further improving the performance. Empirical evaluations on benchmark datasets demonstrate OneKE's efficacy, while case studies further elucidate its adaptability to diverse tasks across multiple domains, highlighting its potential for broad applications. We have open-sourced the Code at https://github.com/zjunlp/OneKE and released a Video at http://oneke.openkg.cn/demo.mp4.
- Abstract(参考訳): 我々は,Webや生のPDFブックから知識を抽出し,さまざまなドメイン(科学,ニュースなど)をサポートする,ドッカー化スキーマ誘導型知識抽出システムOneKEを紹介する。
具体的には、複数のエージェントと構成知識ベースでOneKEを設計する。
異なるエージェントがそれぞれの役割を担い、さまざまな抽出シナリオをサポートする。
構成知識ベースは、スキーマ設定、エラーケースのデバッグ、修正を容易にし、パフォーマンスをさらに改善します。
ベンチマークデータセットに対する実証的な評価は、OneKEの有効性を示し、ケーススタディでは、複数のドメインにわたる多様なタスクへの適応性をさらに解明し、幅広いアプリケーションの可能性を強調している。
我々は、https://github.com/zjunlp/OneKEでコードをオープンソース化し、http://oneke.openkg.cn/demo.mp4.comでビデオをリリースした。
関連論文リスト
- LiPost: Improved Content Understanding With Effective Use of Multi-task Contrastive Learning [2.611731148829789]
多様なセマンティックラベリングタスクから得られたデータとマルチタスクのコントラスト学習を用いて、事前学習されたトランスフォーマーベースのLLMを微調整する。
我々のモデルはゼロショット学習のベースラインを上回り、多言語サポートの改善を提供する。
この作業は、LLMを特定のアプリケーションにカスタマイズし、微調整するLinkedInの垂直チームにとって、堅牢な基盤を提供する。
論文 参考訳(メタデータ) (2024-05-18T17:28:29Z) - Generic Multi-modal Representation Learning for Network Traffic Analysis [6.372999570085887]
ネットワークトラフィック分析は、ネットワーク管理、トラブルシューティング、セキュリティに不可欠である。
異なるユースケースを解決できる柔軟なマルチモーダルオートエンコーダ(MAE)パイプラインを提案する。
我々は、MAEアーキテクチャは汎用的であり、複数のシナリオで有用な表現の学習に使用できると論じる。
論文 参考訳(メタデータ) (2024-05-04T12:24:29Z) - KnowCoder: Coding Structured Knowledge into LLMs for Universal Information Extraction [59.039355258637315]
コード生成によるユニバーサル情報抽出(UIE)を行うためのLarge Language Model(LLM)であるKnowCoderを提案する。
KnowCoderは、異なるスキーマをPythonクラスに一様に変換するコードスタイルのスキーマ表現メソッドを導入した。
KnowCoderには、2フェーズの学習フレームワークがあり、コード事前トレーニングによるスキーマ理解能力と、命令チューニングによるスキーマ追従能力を向上させる。
論文 参考訳(メタデータ) (2024-03-12T14:56:34Z) - DoraemonGPT: Toward Understanding Dynamic Scenes with Large Language Models (Exemplified as A Video Agent) [73.10899129264375]
本稿では,LLMによる動的シーン理解のための包括的かつ概念的にエレガントなシステムであるドラモンGPTについて検討する。
質問/タスクのあるビデオが与えられた場合、DoraemonGPTは入力されたビデオをタスク関連の属性を格納するシンボリックメモリに変換することから始める。
我々は,DoraemonGPTの有効性を,3つのベンチマークといくつかのアプリ内シナリオで広範囲に評価した。
論文 参考訳(メタデータ) (2024-01-16T14:33:09Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
本稿では,大規模言語モデルをDOmain固有のKnowledgEで拡張し,実践的アプリケーション,すなわちDOKEの性能を向上させるためのパラダイムを提案する。
このパラダイムはドメイン知識抽出器に依存し,1)タスクに効果的な知識を準備すること,2)特定のサンプルごとに知識を選択すること,3)LLMで理解可能な方法で知識を表現すること,の3つのステップで動作する。
論文 参考訳(メタデータ) (2023-11-16T07:09:38Z) - Deep learning for table detection and structure recognition: A survey [49.09628624903334]
本調査の目的は,テーブル検出の分野での大きな進展を深く理解することである。
この分野における古典的アプリケーションと新しいアプリケーションの両方について分析する。
既存のモデルのデータセットとソースコードは、読者にこの膨大な文献のコンパスを提供するために組織されている。
論文 参考訳(メタデータ) (2022-11-15T19:42:27Z) - DeepKE: A Deep Learning Based Knowledge Extraction Toolkit for Knowledge
Base Population [95.0099875111663]
DeepKEは、名前付きエンティティ認識、関係抽出、属性抽出など、さまざまな情報抽出タスクを実装している。
DeepKEを使えば、開発者や研究者はデータセットやモデルをカスタマイズして、要求に応じて構造化されていないデータから情報を抽出できる。
論文 参考訳(メタデータ) (2022-01-10T13:29:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。