Optimal Control for Open Quantum System in Circuit Quantum Electrodynamics
- URL: http://arxiv.org/abs/2412.20149v1
- Date: Sat, 28 Dec 2024 13:25:39 GMT
- Title: Optimal Control for Open Quantum System in Circuit Quantum Electrodynamics
- Authors: Mo Zhou, F. A. Cárdenas-López, Sugny Dominique, Xi Chen,
- Abstract summary: We propose a quantum optimal control framework based on the Pontryagin Maximum Principle to design energy- and time-efficient pulses for open quantum systems.
Our results provide a significant step toward efficient control in dissipative open systems and improved qubit readout in circuit quantum electrodynamics.
- Score: 13.781432965608595
- License:
- Abstract: We propose a quantum optimal control framework based on the Pontryagin Maximum Principle to design energy- and time-efficient pulses for open quantum systems. By formulating the Langevin equation of a dissipative LC circuit as a linear control problem, we derive optimized pulses with exponential scaling in energy cost, outperforming conventional shortcut-to-adiabaticity methods such as counter-diabatic driving. When applied to a resonator dispersively coupled to a qubit, these optimized pulses achieve an excellent signal-to-noise ratio comparable to longitudinal coupling schemes across varying critical photon numbers. Our results provide a significant step toward efficient control in dissipative open systems and improved qubit readout in circuit quantum electrodynamics.
Related papers
- EPOC: A Novel Pulse Generation Framework Incorporating Advanced Synthesis Techniques for Quantum Circuits [5.42802616500974]
EPOC is an efficient pulse generation framework for quantum circuits.
It combines ZX-Calculus, circuit partitioning, and circuit synthesis to accelerate pulse generation.
arXiv Detail & Related papers (2024-05-06T19:20:32Z) - Energy control in a quantum oscillator using coherent control and engineered environment [83.88591755871734]
We develop and analyze a new method for manipulation of energy in a quantum harmonic oscillator using coherent, electromagnetic, field and incoherent control.
An approach to coherent and incoherent controls design based on the speed gradient algorithms is proposed.
A robustified speed-gradient control algorithm in differential form is also proposed.
arXiv Detail & Related papers (2024-03-25T20:44:46Z) - Robust Control of Single-Qubit Gates at the Quantum Speed Limit [0.0]
We investigate the underlying robust time-optimal control problem so as to make the best balance.
Based on the Taylor expansion of the system's unitary propagator, we formulate the design problem as the optimal control of an augmented finite-dimensional system.
Numerical simulations for single-qubit systems show that the obtained time-optimal control pulses can effectively suppress gate errors.
arXiv Detail & Related papers (2023-09-11T10:10:58Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Hybrid Gate-Pulse Model for Variational Quantum Algorithms [33.73469431747376]
Current quantum programs are mostly compiled on the gate-level, where quantum circuits are composed of quantum gates.
pulse-level optimization has gained more attention from researchers due to their advantages in terms of circuit duration.
We present a hybrid gate-pulse model that can mitigate these problems.
arXiv Detail & Related papers (2022-12-01T17:06:35Z) - Fast Ion Gates Outside the Lamb-Dicke Regime by Robust Quantum Optimal
Control [16.769083043152627]
We present a quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.
The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates.
Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation.
arXiv Detail & Related papers (2022-09-20T11:14:00Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Methods and Results for Quantum Optimal Pulse Control on Superconducting
Qubit Systems [0.0]
In transmon qubit systems, the quantum gate fidelity can be improved by applying control pulses that can minimize the effects of the environmental noise.
We employ physics-guided quantum optimal control strategies to design optimal pulses driving quantum gates on superconducting qubit systems.
We show that the optimized pulses improve the fidelity of the quantum gates, in particular the single-qubit gates.
arXiv Detail & Related papers (2022-02-07T15:03:41Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Direct Optimal Control Approach to Laser-Driven Quantum Particle
Dynamics [77.34726150561087]
We propose direct optimal control as a robust and flexible alternative to indirect control theory.
The method is illustrated for the case of laser-driven wavepacket dynamics in a bistable potential.
arXiv Detail & Related papers (2020-10-08T07:59:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.