EPOC: A Novel Pulse Generation Framework Incorporating Advanced Synthesis Techniques for Quantum Circuits
- URL: http://arxiv.org/abs/2405.03804v1
- Date: Mon, 6 May 2024 19:20:32 GMT
- Title: EPOC: A Novel Pulse Generation Framework Incorporating Advanced Synthesis Techniques for Quantum Circuits
- Authors: Jinglei Cheng, Yuchen Zhu, Yidong Zhou, Hang Ren, Zhixin Song, Zhiding Liang,
- Abstract summary: EPOC is an efficient pulse generation framework for quantum circuits.
It combines ZX-Calculus, circuit partitioning, and circuit synthesis to accelerate pulse generation.
- Score: 5.42802616500974
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we propose EPOC, an efficient pulse generation framework for quantum circuits that combines ZX-Calculus, circuit partitioning, and circuit synthesis to accelerate pulse generation. Unlike previous works that focus on generating pulses from unitary matrices without exploring equivalent representations, EPOC employs a finer granularity approach by grouping quantum gates and decomposing the resulting unitary matrices into smaller ones using synthesis techniques. This enables increased parallelism and decreased latency in quantum pulses. EPOC also continuously optimizes the circuit by identifying equivalent representations, leading to further reductions in circuit latency while minimizing the computational overhead associated with quantum optimal control. We introduce circuit synthesis into the workflow of quantum optimal control for the first time and achieve a 31.74% reduction in latency compared to previous work and a 76.80% reduction compared to the gate-based method for creating pulses. The approach demonstrates the potential for significant performance improvements in quantum circuits while minimizing computational overhead.
Related papers
- Optimization at the Interface of Unitary and Non-unitary Quantum
Operations in PCOAST [0.3496513815948205]
Pauli-based Circuit Optimization, Analysis and Synthesis Toolchain (PCOAST) introduced as framework for optimizing quantum circuits.
In this paper, we focus on the set of subroutines which look to optimize the PCOAST graph in cases involving unitary and non-unitary operations.
We evaluate the PCOAST optimization subroutines using the Intel Quantum SDK on examples of the Variational Quantum Eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2023-05-16T22:58:14Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Hybrid Gate-Pulse Model for Variational Quantum Algorithms [33.73469431747376]
Current quantum programs are mostly compiled on the gate-level, where quantum circuits are composed of quantum gates.
pulse-level optimization has gained more attention from researchers due to their advantages in terms of circuit duration.
We present a hybrid gate-pulse model that can mitigate these problems.
arXiv Detail & Related papers (2022-12-01T17:06:35Z) - Pulse-efficient quantum machine learning [0.0]
We investigate the impact of pulse-efficient circuits on quantum machine learning algorithms.
We find that pulse-efficient transpilation vastly reduces average circuit durations.
We conclude by applying pulse-efficient transpilation to the Hamiltonian Variational Ansatz and show that it delays the onset of noise-induced barren plateaus.
arXiv Detail & Related papers (2022-11-02T18:00:01Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
We propose that quantum circuits can be modeled as queuing networks.
Our method is scalable and has the potential speed and precision necessary for large scale quantum circuit compilation.
arXiv Detail & Related papers (2021-06-26T10:55:52Z) - Control optimization for parametric hamiltonians by pulse reconstruction [21.723487348914958]
We propose a method to reduce the computational time required to generate the control pulse for a Hamiltonian.
We use simple schemes to accurately reconstruct the control pulses from a set of pulses obtained in advance for a discrete set of predetermined parameter values.
arXiv Detail & Related papers (2021-02-24T14:47:09Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Extending XACC for Quantum Optimal Control [70.19683407682642]
Quantum computing vendors are beginning to open up application programming for direct pulse-level quantum control.
We present an extension to the XACC system-level quantum-classical software framework.
This extension enables the translation of digital quantum circuit representations to equivalent pulse sequences.
arXiv Detail & Related papers (2020-06-04T13:13:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.