論文の概要: Machine and Deep Learning for Credit Scoring: A compliant approach
- arxiv url: http://arxiv.org/abs/2412.20225v1
- Date: Sat, 28 Dec 2024 17:46:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:04:16.885123
- Title: Machine and Deep Learning for Credit Scoring: A compliant approach
- Title(参考訳): クレディ・スコーリングのための機械学習とディープラーニング - コンプライアンスのアプローチ
- Authors: Abdollah Rida,
- Abstract要約: 本稿では,現行の規制体制に挑戦し,新たなBASEL 2と3の準拠技術を導入することを目的としている。
このようなアルゴリズムを使用することで、性能が大幅に向上し、デフォルトのキャプチャレートが向上することを示す。
さらに、Shapley Valuesのパワーを活用して、これらの比較的単純なモデルは、現在の規制システムが考えているようなブラックボックスではないことを証明します。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Credit Scoring is one of the problems banks and financial institutions have to solve on a daily basis. If the state-of-the-art research in Machine and Deep Learning for finance has reached interesting results about Credit Scoring models, usage of such models in a heavily regulated context such as the one in banks has never been done so far. Our work is thus a tentative to challenge the current regulatory status-quo and introduce new BASEL 2 and 3 compliant techniques, while still answering the Federal Reserve Bank and the European Central Bank requirements. With the help of Gradient Boosting Machines (mainly XGBoost) we challenge an actual model used by BANK A for scoring through the door Auto Loan applicants. We prove that the usage of such algorithms for Credit Scoring models drastically improves performance and default capture rate. Furthermore, we leverage the power of Shapley Values to prove that these relatively simple models are not as black-box as the current regulatory system thinks they are, and we attempt to explain the model outputs and Credit Scores within the BANK A Model Design and Validation framework
- Abstract(参考訳): クレディ・スコリングは、銀行や金融機関が日々解決しなければならない問題の1つだ。
金融のための機械学習とDeep Learningの最先端の研究が、Credit Scoringモデルに関する興味深い結果に達した場合、銀行のモデルのような厳格な規制のあるコンテキストにおけるそのようなモデルの使用は、これまで一度も行われていない。
したがって、当社の取り組みは、連邦準備銀行(FRB)と欧州中央銀行(ECB)の要求に応えつつ、現在の規制体制に挑戦し、新たなBASEL 2と3に準拠した技術を導入するための暫定的な取り組みである。
グラディエントブースティングマシン(主にXGBoost)の助けを借りて、BANK Aがオートローン申請者のドアから得点するために使用する実際のモデルに挑戦します。
我々は、Credit Scoringモデルにおけるそのようなアルゴリズムの使用が、パフォーマンスとデフォルトのキャプチャ率を大幅に改善することを証明する。
さらに,これらの比較的単純なモデルが,現行の規制システムほどブラックボックスではないことを証明するために,Shapley Valuesのパワーを活用し,BANK A Model Design and Validationフレームワークにおけるモデル出力とクレディスコアの説明を試みる。
関連論文リスト
- Enhanced Credit Score Prediction Using Ensemble Deep Learning Model [12.85570952381681]
本稿では,現代銀行システムですでに広く利用されているXGBoostやLightGBMのような高性能モデルと,強力なTabNetモデルを組み合わせる。
我々は、ランダムフォレスト、XGBoost、TabNetを統合し、アンサンブルモデリングにおける積み重ね手法により、クレジットスコアレベルを正確に決定できる強力なモデルを開発した。
論文 参考訳(メタデータ) (2024-09-30T21:56:16Z) - Advanced User Credit Risk Prediction Model using LightGBM, XGBoost and Tabnet with SMOTEENN [8.225603728650478]
研究対象として商業銀行が提供する4万件以上のレコードのデータセットを使用します。
実験では、LightGBMとPCAとSMOTEENNの技術を組み合わせることで、銀行が高品質な顧客を正確に予測できることを示した。
論文 参考訳(メタデータ) (2024-08-07T01:37:10Z) - Towards Evaluating Transfer-based Attacks Systematically, Practically,
and Fairly [79.07074710460012]
ディープニューラルネットワーク(DNN)の敵対的脆弱性に大きな注目を集めている。
ブラックボックスDNNモデルを騙すための転送ベース手法が増えている。
30以上のメソッドを実装した転送ベースアタックベンチマーク(TA-Bench)を確立する。
論文 参考訳(メタデータ) (2023-11-02T15:35:58Z) - Empowering Many, Biasing a Few: Generalist Credit Scoring through Large
Language Models [53.620827459684094]
大規模言語モデル(LLM)は、複数のタスクにまたがる強力な一般化能力を持つ信用スコアリングタスクにおいて大きな可能性を秘めている。
クレジットスコアリングのための LLM を探索する,初のオープンソース包括的フレームワークを提案する。
そこで我々は,各種金融リスク評価タスクの煩雑な要求に合わせて,指導チューニングによる最初の信用・リスク評価大言語モデル(CALM)を提案する。
論文 参考訳(メタデータ) (2023-10-01T03:50:34Z) - Would I have gotten that reward? Long-term credit assignment by
counterfactual contribution analysis [50.926791529605396]
モデルベース信用代入アルゴリズムの新たなファミリーであるCOCOA(Counterfactual Contribution Analysis)を紹介する。
我々のアルゴリズムは、その後の報酬を得る際の行動の貢献度を測定することによって、正確な信用割当を実現する。
論文 参考訳(メタデータ) (2023-06-29T09:27:27Z) - Neural Pseudo-Label Optimism for the Bank Loan Problem [78.66533961716728]
本研究では,Emphbank 融資問題に最もよく表される分類問題について検討する。
線形モデルの場合、この問題はモデル予測に直接最適化を加えることで解決できる。
Pseudo-Label Optimism (PLOT)は,この設定をディープニューラルネットワークに適用するための概念的かつ計算学的にシンプルな手法である。
論文 参考訳(メタデータ) (2021-12-03T22:46:31Z) - Predicting Credit Risk for Unsecured Lending: A Machine Learning
Approach [0.0]
本研究は、無担保貸付(クレディットカード)の信用デフォルトを予測するための、同時代の信用評価モデルを構築することを目的とする。
本研究は,光グラディエントブースティングマシン(LGBM)モデルにより,学習速度の向上,効率の向上,データボリュームの大規模化を実現していることを示す。
このモデルの導入により、商業融資機関や銀行の意思決定者に対する信用デフォルトのより良いタイムリーな予測が可能になると期待している。
論文 参考訳(メタデータ) (2021-10-05T17:54:56Z) - Bagging Supervised Autoencoder Classifier for Credit Scoring [3.5977219275318166]
クレジットスコアリングデータセットの不均衡の性質と、クレジットスコアリングデータセットの特徴の不均一性は、効果的なクレジットスコアリングモデルの開発と実装に困難をもたらす。
本稿では,主にスーパービジョンオートエンコーダの性能を活かしたBaging Supervised Autoencoder (BSAC)を提案する。
BSACはまた、過半数クラスのアンサンプに基づいて、Bagingプロセスの変種を採用することで、データ不均衡の問題にも対処する。
論文 参考訳(メタデータ) (2021-08-12T17:49:08Z) - Explanations of Machine Learning predictions: a mandatory step for its
application to Operational Processes [61.20223338508952]
信用リスクモデリングは重要な役割を果たす。
近年,機械学習や深層学習の手法が採用されている。
この分野における説明可能性問題に LIME 手法を適用することを提案する。
論文 参考訳(メタデータ) (2020-12-30T10:27:59Z) - Explainable AI for Interpretable Credit Scoring [0.8379286663107844]
クレジットスコアリングは、金融の専門家がローン申請を受諾するかどうかについてより良い判断を下すのに役立つ。
アルゴリズムによる決定が一貫性のあるものであることを保証するため、規則はモデル解釈可能性の必要性を追加している。
正確かつ解釈可能な信用スコアモデルを提案する。
論文 参考訳(メタデータ) (2020-12-03T18:44:03Z) - Super-App Behavioral Patterns in Credit Risk Models: Financial,
Statistical and Regulatory Implications [110.54266632357673]
従来の官僚データとは対照的に、アプリベースのマーケットプレースから派生した代替データが信用スコアモデルに与える影響を提示する。
2つの国にまたがって検証した結果、これらの新たなデータソースは、低体重者や若年者における金融行動を予測するのに特に有用であることが示された。
論文 参考訳(メタデータ) (2020-05-09T01:32:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。