論文の概要: Teach YOLO to Remember: A Self-Distillation Approach for Continual Object Detection
- arxiv url: http://arxiv.org/abs/2503.04688v1
- Date: Thu, 06 Mar 2025 18:31:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 15:59:16.651673
- Title: Teach YOLO to Remember: A Self-Distillation Approach for Continual Object Detection
- Title(参考訳): ヨーロ先生に思い出す:連続物体検出のための自己蒸留アプローチ
- Authors: Riccardo De Monte, Davide Dalle Pezze, Gian Antonio Susto,
- Abstract要約: YOLOのようなリアルタイムオブジェクト検出器は、複数のエポックのための大規模なデータセットでトレーニングされた場合、例外的なパフォーマンスを達成する。
データが徐々に到着する現実のシナリオでは、ニューラルネットワークは破滅的な忘れに苦しむ。
YOLOを用いた連続物体検出に適した自己蒸留法であるYOLO LwFを紹介する。
- 参考スコア(独自算出の注目度): 5.6148728159802035
- License:
- Abstract: Real-time object detectors like YOLO achieve exceptional performance when trained on large datasets for multiple epochs. However, in real-world scenarios where data arrives incrementally, neural networks suffer from catastrophic forgetting, leading to a loss of previously learned knowledge. To address this, prior research has explored strategies for Class Incremental Learning (CIL) in Continual Learning for Object Detection (CLOD), with most approaches focusing on two-stage object detectors. However, existing work suggests that Learning without Forgetting (LwF) may be ineffective for one-stage anchor-free detectors like YOLO due to noisy regression outputs, which risk transferring corrupted knowledge. In this work, we introduce YOLO LwF, a self-distillation approach tailored for YOLO-based continual object detection. We demonstrate that when coupled with a replay memory, YOLO LwF significantly mitigates forgetting. Compared to previous approaches, it achieves state-of-the-art performance, improving mAP by +2.1% and +2.9% on the VOC and COCO benchmarks, respectively.
- Abstract(参考訳): YOLOのようなリアルタイムオブジェクト検出器は、複数のエポックのための大規模なデータセットでトレーニングされた場合、例外的なパフォーマンスを達成する。
しかし、データが徐々に到着する現実のシナリオでは、ニューラルネットワークは破滅的な忘れ込みに悩まされ、これまで学んだ知識が失われる。
これを解決するために、先行研究は2段階の物体検出に焦点をあてたCLOD(Continuous Learning for Object Detection)におけるクラスインクリメンタルラーニング(CIL)の戦略を探求してきた。
しかし、既存の研究は、学習を忘れること (LwF) は、ノイズレグレッション出力のため、YOLOのような1段階のアンカーフリー検出器では効果がない可能性を示唆している。
本稿では, YOLOを用いた連続物体検出に適した自己蒸留法であるYOLO LwFを紹介する。
我々は、リプレイメモリと組み合わせることで、YOLO LwFは忘れを著しく軽減することを示した。
従来のアプローチと比較して、mAPを+2.1%改善し、VOCベンチマークとCOCOベンチマークで+2.9%改善した。
関連論文リスト
- CLDA-YOLO: Visual Contrastive Learning Based Domain Adaptive YOLO Detector [10.419327930845922]
非教師付きドメイン適応(UDA)アルゴリズムは、ドメインシフトの条件下でオブジェクト検出器の性能を著しく向上させることができる。
視覚コントラスト学習(CLDA-YOLO)に基づく教師なし領域適応型YOLO検出器を提案する。
論文 参考訳(メタデータ) (2024-12-16T14:25:52Z) - SEEKR: Selective Attention-Guided Knowledge Retention for Continual Learning of Large Language Models [27.522743690956315]
本研究では,大規模言語モデル (LLM) のデータ効率性に基づく連続学習のためのSelective attEntion-guided Knowledge Retention法(SEEKR)を提案する。
SEEKRは、よりきめ細かい知識保持のために選択された注目ヘッドに注意蒸留を行う。
LLMのための2つの連続学習ベンチマークの実験結果は、SEEKRが既存の手法よりも性能と効率の両面で優れていることを示す。
論文 参考訳(メタデータ) (2024-11-09T13:02:36Z) - ALTBI: Constructing Improved Outlier Detection Models via Optimization of Inlier-Memorization Effect [2.3961612657966946]
外乱検出(英: Outlier detection, OD)とは、特定のデータや今後のデータから異常な観測(または外乱)を識別するタスクである。
Inlier-memorization (IM) 効果は、生成モデルが初期の学習段階において、アウトリーチよりも前のインリーチを記憶することを示唆している。
IM効果を最大限に活用し,UODタスクに対処する理論的原理的手法を提案する。
論文 参考訳(メタデータ) (2024-08-19T08:40:53Z) - YOLOv10: Real-Time End-to-End Object Detection [68.28699631793967]
リアルタイムオブジェクト検出の分野では,YOLOが主流のパラダイムとして浮上している。
非最大抑圧(NMS)による処理後ハマーによるYOLOのエンドツーエンドデプロイメントへの依存。
YOLOの総合的効率-精度駆動型モデル設計戦略を紹介する。
論文 参考訳(メタデータ) (2024-05-23T11:44:29Z) - YOLO-World: Real-Time Open-Vocabulary Object Detection [87.08732047660058]
オープン語彙検出機能でYOLOを強化する革新的なアプローチであるYOLO-Worldを紹介する。
提案手法は,ゼロショット方式で広範囲の物体を高効率で検出する。
YOLO-WorldはV100上で52.0 FPSの35.4 APを達成した。
論文 参考訳(メタデータ) (2024-01-30T18:59:38Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time Object Detection [63.36722419180875]
YOLO-MSと呼ばれる効率的かつ高性能な物体検出器を提供する。
私たちは、他の大規模なデータセットに頼ることなく、MS COCOデータセット上でYOLO-MSをスクラッチからトレーニングします。
私たちの作業は、他のYOLOモデルのプラグイン・アンド・プレイモジュールとしても機能します。
論文 参考訳(メタデータ) (2023-08-10T10:12:27Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z) - Learning-based Point Cloud Registration for 6D Object Pose Estimation in
the Real World [55.7340077183072]
我々は、ポイントクラウドデータからオブジェクトの6Dポーズを推定するタスクに取り組む。
この課題に対処する最近の学習ベースのアプローチは、合成データセットにおいて大きな成功を収めている。
これらの障害の原因を分析し、ソースとターゲットポイントの雲の特徴分布の違いに遡る。
論文 参考訳(メタデータ) (2022-03-29T07:55:04Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。