論文の概要: Underwater Waste Detection Using Deep Learning A Performance Comparison of YOLOv7 to 10 and Faster RCNN
- arxiv url: http://arxiv.org/abs/2507.18967v1
- Date: Fri, 25 Jul 2025 05:36:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 16:16:48.830049
- Title: Underwater Waste Detection Using Deep Learning A Performance Comparison of YOLOv7 to 10 and Faster RCNN
- Title(参考訳): 深層学習を用いた水中廃棄物検出 : YOLOv7と10, RCNNの高速比較
- Authors: UMMPK Nawarathne, HMNS Kumari, HMLS Kumari,
- Abstract要約: YOLOv7, YOLOv8, YOLOv9, および高速領域畳み込みニューラルネットワーク(R-CNN)を含む5つの最先端物体認識アルゴリズムの性能について検討した。
YOLOv8は、平均平均精度(mAP)が80.9%で他より優れており、大きなパフォーマンスを示している。
これらの結果から, YOLOv8モデルが大気汚染対策に有効である可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Underwater pollution is one of today's most significant environmental concerns, with vast volumes of garbage found in seas, rivers, and landscapes around the world. Accurate detection of these waste materials is crucial for successful waste management, environmental monitoring, and mitigation strategies. In this study, we investigated the performance of five cutting-edge object recognition algorithms, namely YOLO (You Only Look Once) models, including YOLOv7, YOLOv8, YOLOv9, YOLOv10, and Faster Region-Convolutional Neural Network (R-CNN), to identify which model was most effective at recognizing materials in underwater situations. The models were thoroughly trained and tested on a large dataset containing fifteen different classes under diverse conditions, such as low visibility and variable depths. From the above-mentioned models, YOLOv8 outperformed the others, with a mean Average Precision (mAP) of 80.9%, indicating a significant performance. This increased performance is attributed to YOLOv8's architecture, which incorporates advanced features such as improved anchor-free mechanisms and self-supervised learning, allowing for more precise and efficient recognition of items in a variety of settings. These findings highlight the YOLOv8 model's potential as an effective tool in the global fight against pollution, improving both the detection capabilities and scalability of underwater cleanup operations.
- Abstract(参考訳): 地下水汚染は今日でも最も重要な環境問題の一つであり、海や川、風景から大量のゴミが見つかっている。
これらの廃棄物の正確な検出は, 廃棄物管理, 環境モニタリング, 緩和戦略の立案に不可欠である。
本研究では, YOLOv7, YOLOv8, YOLOv9, YOLOv10, Faster Region-Convolutional Neural Network (R-CNN) を含む, YOLO(You Only Look Once)モデルを用いて, 水中環境下での物体の認識に最も有効なモデルを特定する。
モデルは、低可視性や可変深度などの様々な条件下で、15の異なるクラスを含む大規模なデータセットで、徹底的にトレーニングされ、テストされた。
上記のモデルから、YOLOv8は他のモデルよりも優れ、平均精度(mAP)は80.9%であった。
この性能向上はYOLOv8のアーキテクチャによるもので、アンカーレス機構の改善や自己教師付き学習といった高度な機能を備えており、さまざまな設定におけるアイテムのより正確かつ効率的な認識を可能にしている。
これらの結果から, YOLOv8モデルが大気汚染対策の有効なツールとしての可能性を強調し, 水中浄化作業の検知能力とスケーラビリティを改善した。
関連論文リスト
- Underlying Semantic Diffusion for Effective and Efficient In-Context Learning [113.4003355229632]
Underlying Semantic Diffusion (US-Diffusion)は、セマンティック学習、計算効率、文脈内学習能力を高める拡張拡散モデルである。
本稿では,フィードバック信号を利用したフィードバック支援学習(FAL)フレームワークを提案する。
また,高雑音レベルの時間ステップで高密度サンプリングを行うためのプラグイン・アンド・プレイの効率的なサンプリング戦略(ESS)を提案する。
論文 参考訳(メタデータ) (2025-03-06T03:06:22Z) - Plastic Waste Classification Using Deep Learning: Insights from the WaDaBa Dataset [0.0]
本研究では、畳み込みニューラルネットワーク(CNN)とYOLO(You Only Look Once)のようなオブジェクト検出モデルに焦点を当てる。
その結果, YOLO-11mの精度は98.03%, mAP50(0.990)で, YOLO-11nも同様だがmAP50(0.992)であった。
YOLO-10nのような軽量モデルはより高速に訓練されたが精度は低く、MobileNet V2は優れた性能(97.12%の精度)を示したが、オブジェクト検出では不足していた。
論文 参考訳(メタデータ) (2024-12-28T18:00:52Z) - YOLOv5, YOLOv8 and YOLOv10: The Go-To Detectors for Real-time Vision [0.6662800021628277]
本稿では、YOLOv5, YOLOv8, YOLOv10に着目し、YOLO(You Only Look Once)オブジェクト検出アルゴリズムの進化に焦点を当てた。
これらのバージョンにまたがるエッジデプロイメントのアーキテクチャの進歩、パフォーマンスの改善、適合性を分析します。
論文 参考訳(メタデータ) (2024-07-03T10:40:20Z) - YOLO9tr: A Lightweight Model for Pavement Damage Detection Utilizing a Generalized Efficient Layer Aggregation Network and Attention Mechanism [0.0]
本稿では,舗装損傷検出のための軽量物体検出モデルYOLO9trを提案する。
YOLO9trはYOLOv9アーキテクチャに基づいており、機能抽出とアテンション機構を強化する部分的なアテンションブロックを備えている。
このモデルは、最大136FPSのフレームレートを実現し、ビデオ監視や自動検査システムなどのリアルタイムアプリケーションに適合する。
論文 参考訳(メタデータ) (2024-06-17T06:31:43Z) - YOLOv10: Real-Time End-to-End Object Detection [68.28699631793967]
リアルタイムオブジェクト検出の分野では,YOLOが主流のパラダイムとして浮上している。
非最大抑圧(NMS)による処理後ハマーによるYOLOのエンドツーエンドデプロイメントへの依存。
YOLOの総合的効率-精度駆動型モデル設計戦略を紹介する。
論文 参考訳(メタデータ) (2024-05-23T11:44:29Z) - YOLOv5 vs. YOLOv8 in Marine Fisheries: Balancing Class Detection and Instance Count [0.0]
本稿では, YOLOv5 と YOLOv8 を用いて, 動脈, 嚢胞, 排便の3つの異なるクラスについて, 対象物検出法の比較検討を行った。
YOLOv5は、高い精度と精度で、動脈と嚢胞を検出できる。
しかし、排他物を検出するということになると、YOLOv5は顕著な課題と限界に直面した。
論文 参考訳(メタデータ) (2024-04-01T20:01:04Z) - YOLO-World: Real-Time Open-Vocabulary Object Detection [87.08732047660058]
オープン語彙検出機能でYOLOを強化する革新的なアプローチであるYOLO-Worldを紹介する。
提案手法は,ゼロショット方式で広範囲の物体を高効率で検出する。
YOLO-WorldはV100上で52.0 FPSの35.4 APを達成した。
論文 参考訳(メタデータ) (2024-01-30T18:59:38Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time Object Detection [63.36722419180875]
YOLO-MSと呼ばれる効率的かつ高性能な物体検出器を提供する。
私たちは、他の大規模なデータセットに頼ることなく、MS COCOデータセット上でYOLO-MSをスクラッチからトレーニングします。
私たちの作業は、他のYOLOモデルのプラグイン・アンド・プレイモジュールとしても機能します。
論文 参考訳(メタデータ) (2023-08-10T10:12:27Z) - Underwater target detection based on improved YOLOv7 [7.264267222876267]
本研究では,水中目標検出のための改良型YOLOv7ネットワーク(YOLOv7-AC)を提案する。
提案するネットワークは、ACmixBlockモジュールを使用して、E-ELAN構造の3x3畳み込みブロックを置き換える。
ResNet-ACmixモジュールは、特徴情報の損失を回避し、計算量を削減するように設計されている。
論文 参考訳(メタデータ) (2023-02-14T09:50:52Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z) - To be Critical: Self-Calibrated Weakly Supervised Learning for Salient
Object Detection [95.21700830273221]
弱教師付き有色物体検出(WSOD)は,画像レベルのアノテーションを用いた有色度モデルの開発を目的としている。
擬似ラベルとネットワーク予測の相互校正ループを明確に設定し,自己校正学習戦略を提案する。
十分に整合したアノテーションを持つはるかに小さなデータセットであっても、モデルがより優れたパフォーマンスと一般化性を達成するのに役立ちます。
論文 参考訳(メタデータ) (2021-09-04T02:45:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。