論文の概要: Progressively Exploring and Exploiting Cost-Free Data to Break Fine-Grained Classification Barriers
- arxiv url: http://arxiv.org/abs/2412.20383v2
- Date: Fri, 18 Jul 2025 14:58:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-21 14:37:14.979237
- Title: Progressively Exploring and Exploiting Cost-Free Data to Break Fine-Grained Classification Barriers
- Title(参考訳): 細粒度分類バリアを壊すためのコストフリーデータの段階的探索とエクスプロイト
- Authors: Li-Jun Zhao, Zhen-Duo Chen, Zhi-Yuan Xue, Xin Luo, Xin-Shun Xu,
- Abstract要約: 本稿では,細粒度分類における障壁を突破する新しい学習パラダイムを提案する。
このパラダイムにより、モデルは推論中に徐々に学習し、それによってコストフリーなデータを活用することができる。
実験により,本手法の有効性が示された。
- 参考スコア(独自算出の注目度): 13.805180905579832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current fine-grained classification research primarily focuses on fine-grained feature learning. However, in real-world scenarios, fine-grained data annotation is challenging, and the features and semantics are highly diverse and frequently changing. These issues create inherent barriers between traditional experimental settings and real-world applications, limiting the effectiveness of conventional fine-grained classification methods. Although some recent studies have provided potential solutions to these issues, most of them still rely on limited supervised information and thus fail to offer effective solutions. In this paper, based on theoretical analysis, we propose a novel learning paradigm to break the barriers in fine-grained classification. This paradigm enables the model to progressively learn during inference, thereby leveraging cost-free data to more accurately represent fine-grained categories and adapt to dynamic semantic changes. On this basis, an efficient EXPloring and EXPloiting strategy and method (EXP2) is designed. Thereinto, useful inference data samples are explored according to class representations and exploited to optimize classifiers. Experimental results demonstrate the general effectiveness of our method, providing guidance for future in-depth understanding and exploration of real-world fine-grained classification.
- Abstract(参考訳): 現在のきめ細かい分類研究は、主にきめ細かい特徴学習に焦点を当てている。
しかし、現実のシナリオでは、きめ細かいデータアノテーションは困難であり、機能やセマンティクスは非常に多様で頻繁に変化する。
これらの問題は、従来の実験的な設定と実世界の応用の間に固有の障壁を生じさせ、従来のきめ細かい分類法の有効性を制限する。
いくつかの最近の研究はこれらの問題に対する潜在的な解決策を提供してきたが、それらの多くは依然として限られた教師付き情報に依存しており、効果的な解決策を提供していない。
本稿では,理論解析に基づいて,細粒度分類における障壁を壊す新しい学習パラダイムを提案する。
このパラダイムにより、モデルは推論中に徐々に学習し、コストのないデータを活用してより正確に詳細なカテゴリを表現し、動的セマンティックな変化に適応することができる。
そこで, 効率的なEXP2戦略と手法を考案した。
そこで、クラス表現に基づいて有用な推論データサンプルを探索し、分類器を最適化するために利用する。
実験により,本手法の有効性を実証し,実世界の細粒度分類の詳細な理解と探索のためのガイダンスを提供する。
関連論文リスト
- Preview-based Category Contrastive Learning for Knowledge Distillation [53.551002781828146]
知識蒸留(PCKD)のための新しい予見型カテゴリーコントラスト学習法を提案する。
まず、インスタンスレベルの特徴対応と、インスタンスの特徴とカテゴリ中心の関係の両方の構造的知識を蒸留する。
カテゴリ表現を明示的に最適化し、インスタンスとカテゴリの表現を明確に関連付けることができる。
論文 参考訳(メタデータ) (2024-10-18T03:31:00Z) - Exploiting Fine-Grained Prototype Distribution for Boosting Unsupervised Class Incremental Learning [13.17775851211893]
本稿では,教師なしクラスインクリメンタルラーニング(UCIL)の課題について検討する。
この問題に対処することの本質は、包括的特徴表現を効果的に捉え、未知の新しいクラスを発見することである。
本稿では,新しいクラスと既存クラスの重複を最小限に抑え,歴史的知識を保存し,破滅的な忘れの現象を緩和する戦略を提案する。
論文 参考訳(メタデータ) (2024-08-19T14:38:27Z) - TESSERACT: Eliminating Experimental Bias in Malware Classification
across Space and Time (Extended Version) [18.146377453918724]
マルウェア検知器は、常に進化するオペレーティングシステムや攻撃方法によって、しばしば性能劣化を経験する。
本論文は, 検出作業における2つの実験バイアス源により, 一般的に報告される結果が膨らんでいることを論じる。
論文 参考訳(メタデータ) (2024-02-02T12:27:32Z) - Learning to Learn for Few-shot Continual Active Learning [9.283518682371756]
継続的な学習は、新しいドメインで可塑性を示しながら、以前見たタスクを解く際の安定性を確保するために努力する。
連続学習の最近の進歩は、特にNLPドメインにおいて、主に教師付き学習環境に限られている。
我々はメタラーニングを活用し,メタコンチネンタルアクティブラーニングと呼ばれる手法を提案する。
論文 参考訳(メタデータ) (2023-11-07T05:22:11Z) - Adaptive End-to-End Metric Learning for Zero-Shot Cross-Domain Slot
Filling [2.6056468338837457]
スロットフィリングは、トレーニング中にサンプルを見ることのない新しいドメインを扱う上で重要な課題である。
ほとんどの先行研究は、メートル法学習に基づく2パスパイプライン方式でこの問題に対処している。
そこで本研究では,ゼロショットスロットの補充に挑戦する手法として,適応的なエンドツーエンドの計量学習手法を提案する。
論文 参考訳(メタデータ) (2023-10-23T19:01:16Z) - Open World Classification with Adaptive Negative Samples [89.2422451410507]
オープンワールド分類は、自然言語処理における重要な実践的妥当性と影響を伴う課題である。
そこで本研究では, アンダーライン適応型アンダーラインアンプ (ANS) に基づいて, 学習段階における効果的な合成オープンカテゴリサンプルを生成する手法を提案する。
ANSは最先端の手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-03-09T21:12:46Z) - Systematic Evaluation of Predictive Fairness [60.0947291284978]
バイアス付きデータセットのトレーニングにおけるバイアスの緩和は、重要なオープンな問題である。
複数のタスクにまたがる様々なデバイアス化手法の性能について検討する。
データ条件が相対モデルの性能に強い影響を与えることがわかった。
論文 参考訳(メタデータ) (2022-10-17T05:40:13Z) - Prototype-Anchored Learning for Learning with Imperfect Annotations [83.7763875464011]
不完全な注釈付きデータセットからバイアスのない分類モデルを学ぶことは困難である。
本稿では,様々な学習に基づく分類手法に容易に組み込むことができるプロトタイプ・アンコレッド学習法を提案する。
我々は,PALがクラス不均衡学習および耐雑音学習に与える影響を,合成および実世界のデータセットに関する広範な実験により検証した。
論文 参考訳(メタデータ) (2022-06-23T10:25:37Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - Bridging Non Co-occurrence with Unlabeled In-the-wild Data for
Incremental Object Detection [56.22467011292147]
物体検出における破滅的忘れを緩和するために,いくつかの漸進的学習法が提案されている。
有効性にもかかわらず、これらの手法は新規クラスのトレーニングデータにラベルのないベースクラスの共起を必要とする。
そこで本研究では,新たな授業の訓練において,欠落した基本クラスが原因で生じる非発生を補うために,未ラベルのインザ・ザ・ワイルドデータを使用することを提案する。
論文 参考訳(メタデータ) (2021-10-28T10:57:25Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
近年の最先端のアクティブラーニング手法は, 主にGAN(Generative Adversarial Networks)をサンプル取得に活用している。
本稿では,MCDAL(Maximum Discrepancy for Active Learning)と呼ぶ新しいアクティブラーニングフレームワークを提案する。
特に,両者の差分を最大化することにより,より厳密な決定境界を学習する2つの補助的分類層を利用する。
論文 参考訳(メタデータ) (2021-07-23T06:57:08Z) - Just Label What You Need: Fine-Grained Active Selection for Perception
and Prediction through Partially Labeled Scenes [78.23907801786827]
提案手法は,コストに配慮した手法と,部分的にラベル付けされたシーンを通じて詳細なサンプル選択を可能にする一般化を導入している。
実世界の大規模自動運転データセットに関する我々の実験は、微粒な選択が知覚、予測、下流計画タスクのパフォーマンスを向上させることを示唆している。
論文 参考訳(メタデータ) (2021-04-08T17:57:41Z) - A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained
Classification [38.68079253627819]
本ベンチマークは, avesおよびfungi分類のクラスをサンプリングして得られた2つの細粒度分類データセットからなる。
最近提案されたSSLメソッドは大きなメリットをもたらし、深いネットワークがゼロから訓練されたときにクラス外のデータを効果的にパフォーマンスを向上させることができます。
我々の研究は、現実的データセットの専門家による半教師付き学習は、現在文学で普及しているものとは異なる戦略を必要とする可能性があることを示唆している。
論文 参考訳(メタデータ) (2021-04-01T17:59:41Z) - Towards Cross-Granularity Few-Shot Learning: Coarse-to-Fine
Pseudo-Labeling with Visual-Semantic Meta-Embedding [13.063136901934865]
少ないショットラーニングは、テスト時に少数のサンプルしか持たない、新しいカテゴリに迅速に適応することを目的としている。
本稿では,より困難なシナリオ,すなわちクロスグラニュラリティ・グラニュラリティ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラ
画像埋め込みの類似性に応じて,各粗いクラスを擬似微細クラスにグリーディクラスタリングすることで,詳細なデータ分布を近似する。
論文 参考訳(メタデータ) (2020-07-11T03:44:21Z) - Toward Optimal Probabilistic Active Learning Using a Bayesian Approach [4.380488084997317]
アクティブラーニングは、コストの高いラベリングリソースを効率よく効果的に割り当てることで、ラベリングコストを削減することを目的としている。
提案したモデルにおける既存の選択戦略を再構築することにより、どの側面が現在の最先端に包含されていないかを説明することができる。
論文 参考訳(メタデータ) (2020-06-02T15:59:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。