論文の概要: EraseAnything: Enabling Concept Erasure in Rectified Flow Transformers
- arxiv url: http://arxiv.org/abs/2412.20413v1
- Date: Sun, 29 Dec 2024 09:42:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:06:22.285262
- Title: EraseAnything: Enabling Concept Erasure in Rectified Flow Transformers
- Title(参考訳): EraseAnything: 整流トランスにおける概念消去の実現
- Authors: Daiheng Gao, Shilin Lu, Shaw Walters, Wenbo Zhou, Jiaming Chu, Jie Zhang, Bang Zhang, Mengxi Jia, Jian Zhao, Zhaoxin Fan, Weiming Zhang,
- Abstract要約: EraseAnythingは、最新のフローベースのT2Iフレームワークにおける概念消去に対処するために特別に開発された最初の方法である。
概念消去を二段階最適化問題として定式化し,LoRAに基づくパラメータチューニングとアテンションマップ正規化器を用いた。
本研究では,意図しない概念の除去が意図せず,無関係な概念のパフォーマンスを損なうことのない自己矛盾型学習戦略を提案する。
- 参考スコア(独自算出の注目度): 33.195628798316754
- License:
- Abstract: Removing unwanted concepts from large-scale text-to-image (T2I) diffusion models while maintaining their overall generative quality remains an open challenge. This difficulty is especially pronounced in emerging paradigms, such as Stable Diffusion (SD) v3 and Flux, which incorporate flow matching and transformer-based architectures. These advancements limit the transferability of existing concept-erasure techniques that were originally designed for the previous T2I paradigm (\textit{e.g.}, SD v1.4). In this work, we introduce \logopic \textbf{EraseAnything}, the first method specifically developed to address concept erasure within the latest flow-based T2I framework. We formulate concept erasure as a bi-level optimization problem, employing LoRA-based parameter tuning and an attention map regularizer to selectively suppress undesirable activations. Furthermore, we propose a self-contrastive learning strategy to ensure that removing unwanted concepts does not inadvertently harm performance on unrelated ones. Experimental results demonstrate that EraseAnything successfully fills the research gap left by earlier methods in this new T2I paradigm, achieving state-of-the-art performance across a wide range of concept erasure tasks.
- Abstract(参考訳): 大規模なテキスト・ツー・イメージ(T2I)拡散モデルから不要な概念を取り除き、全体の生成品質を維持することは、依然としてオープンな課題である。
この困難さは、フローマッチングとトランスフォーマーベースのアーキテクチャを組み込んだSD(Stable Diffusion) v3やFluxといった新興パラダイムにおいて特に顕著である。
これらの進歩は、以前のT2Iパラダイム (\textit{e g }, SD v1.4) のために設計された既存の概念消去技術の伝達可能性を制限する。
本稿では,最新のフローベースT2Iフレームワークにおいて,概念消去に対処するために開発された最初の手法である \logopic \textbf{EraseAnything} を紹介する。
両レベル最適化問題として概念消去を定式化し、LoRAに基づくパラメータチューニングとアテンションマップ正規化器を用いて、望ましくないアクティベーションを選択的に抑制する。
さらに,不要な概念の除去が意図せず,無関係な概念のパフォーマンスを損なわないよう,自己コントラスト学習戦略を提案する。
実験の結果,EraseAnythingは従来のT2Iパラダイムの手法が残していた研究ギャップを埋めることに成功した。
関連論文リスト
- Derivative-Free Diffusion Manifold-Constrained Gradient for Unified XAI [59.96044730204345]
微分自由拡散多様体制約勾配(FreeMCG)を導入する。
FreeMCGは、与えられたニューラルネットワークの説明可能性を改善する基盤として機能する。
提案手法は,XAIツールが期待する本質性を保ちながら,最先端の成果が得られることを示す。
論文 参考訳(メタデータ) (2024-11-22T11:15:14Z) - MagicTailor: Component-Controllable Personalization in Text-to-Image Diffusion Models [51.1034358143232]
概念内の個々のコンポーネントをカスタマイズし、再構成できる新しいタスクである、コンポーネント制御可能なパーソナライゼーションを導入する。
この課題は、望ましくない要素が概念を歪ませる意味汚染と、目的とする概念と構成要素を不均等に学習する意味不均衡という2つの課題に直面する。
動的マスケド・デグラデーション(Dynamic Masked Degradation, 動的マスケド・デグラデーション, 動的マスケド・デグラデーション)を用いて、望まない視覚的セマンティクスを適応的に摂動し、望まれる視覚的セマンティクスをよりバランスよく学習するために、デュアルストリーム・バランシング(Dual-Stream Balancing)を設計する。
論文 参考訳(メタデータ) (2024-10-17T09:22:53Z) - STEREO: Towards Adversarially Robust Concept Erasing from Text-to-Image Generation Models [18.64776777593743]
2つの異なる段階を含む STEREO という手法を提案する。
第1段階は、CEMから消去された概念を再生できる強力な、多様な敵のプロンプトを徹底的に探索する。
第2段では,1回目で目標概念を確実に消去するアンカー概念に基づく構成目的を導入する。
論文 参考訳(メタデータ) (2024-08-29T17:29:26Z) - Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models [76.39651111467832]
本稿では,Reliable and Efficient Concept Erasure (RECE)を提案する。
派生した埋め込みによって表現される不適切なコンテンツを緩和するために、RECEはそれらをクロスアテンション層における無害な概念と整合させる。
新たな表現埋め込みの導出と消去を反復的に行い、不適切な概念の徹底的な消去を実現する。
論文 参考訳(メタデータ) (2024-07-17T08:04:28Z) - Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models [58.74606272936636]
テキスト・ツー・イメージ(T2I)拡散モデルは、テキスト・プロンプトと密接に対応した画像を生成する際、例外的な機能を示す。
モデルは、暴力やヌードの画像を生成したり、不適切な文脈で公共の人物の無許可の肖像画を作成するなど、悪意ある目的のために利用することができる。
悪質な概念や望ましくない概念の発生を防ぐために拡散モデルを変更する概念除去法が提案されている。
論文 参考訳(メタデータ) (2024-06-21T03:58:44Z) - Unlearning Concepts in Diffusion Model via Concept Domain Correction and Concept Preserving Gradient [20.698305103879232]
我々はtextbfDoCo (textbfDomaintextbfCorrection) という新しい概念領域補正フレームワークを提案する。
本手法は, 対象概念の包括的未学習を保証し, 先進的学習を通して, センシティブな概念とアンカーの概念の出力領域を整合させることにより, 対象概念の包括的未学習を確実にする。
また、矛盾する勾配成分を緩和し、特定の概念を学習しながらモデルの実用性を維持するための概念保存的勾配手術手法も導入する。
論文 参考訳(メタデータ) (2024-05-24T07:47:36Z) - Editing Massive Concepts in Text-to-Image Diffusion Models [58.620118104364174]
拡散モデル(EMCID)における大量概念を編集する2段階手法を提案する。
第1段階では、テキストアライメントの損失と拡散雑音予測の損失から2つの自己蒸留による各概念のメモリ最適化を行う。
第2段階では、多層クローズドフォームモデル編集による大規模な概念編集を行う。
論文 参考訳(メタデータ) (2024-03-20T17:59:57Z) - DivCon: Divide and Conquer for Progressive Text-to-Image Generation [0.0]
拡散駆動型テキスト・ツー・イメージ(T2I)生成は顕著な進歩を遂げた。
レイアウトは、大きな言語モデルとレイアウトベースの拡散モデルを橋渡しするためのインターメジウムとして使用される。
本稿では,T2I生成タスクを単純なサブタスクに分解する分割対コンカレント手法を提案する。
論文 参考訳(メタデータ) (2024-03-11T03:24:44Z) - All but One: Surgical Concept Erasing with Model Preservation in
Text-to-Image Diffusion Models [22.60023885544265]
大規模なデータセットには、性的に明示的な、著作権のある、または望ましくないコンテンツが含まれており、モデルがそれらを直接生成することができる。
拡散モデルにおける概念消去に取り組むために、ファインチューニングアルゴリズムが開発された。
これらの課題をすべて解決する新しいアプローチを提示します。
論文 参考訳(メタデータ) (2023-12-20T07:04:33Z) - Ring-A-Bell! How Reliable are Concept Removal Methods for Diffusion Models? [52.238883592674696]
Ring-A-Bellは、T2I拡散モデルのためのモデルに依存しないレッドチームツールである。
これは、不適切なコンテンツの生成に対応する拡散モデルに対する問題的プロンプトを特定する。
この結果から,安全プロンプトベンチマークの操作により,既存の安全メカニズムを回避できると考えられるプロンプトを変換できることが示唆された。
論文 参考訳(メタデータ) (2023-10-16T02:11:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。