Multi-Scenario Reasoning: Unlocking Cognitive Autonomy in Humanoid Robots for Multimodal Understanding
- URL: http://arxiv.org/abs/2412.20429v3
- Date: Tue, 07 Jan 2025 18:24:45 GMT
- Title: Multi-Scenario Reasoning: Unlocking Cognitive Autonomy in Humanoid Robots for Multimodal Understanding
- Authors: Libo Wang,
- Abstract summary: This research proposes a multi-scenario reasoning architecture to solve the technical shortcomings of multi-modal understanding in this field.<n>The findings demonstrate the feasibility of this architecture in multimodal data.<n>It heralds the future development of self-learning and autonomous behavior of humanoid robots in changing scenarios.
- Score: 4.586907225774023
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To improve the cognitive autonomy of humanoid robots, this research proposes a multi-scenario reasoning architecture to solve the technical shortcomings of multi-modal understanding in this field. It draws on simulation based experimental design that adopts multi-modal synthesis (visual, auditory, tactile) and builds a simulator "Maha" to perform the experiment. The findings demonstrate the feasibility of this architecture in multimodal data. It provides reference experience for the exploration of cross-modal interaction strategies for humanoid robots in dynamic environments. In addition, multi-scenario reasoning simulates the high-level reasoning mechanism of the human brain to humanoid robots at the cognitive level. This new concept promotes cross-scenario practical task transfer and semantic-driven action planning. It heralds the future development of self-learning and autonomous behavior of humanoid robots in changing scenarios.
Related papers
- OminiAdapt: Learning Cross-Task Invariance for Robust and Environment-Aware Robotic Manipulation [1.4719692998274154]
This paper proposes an imitation learning algorithm tailored for humanoid robots.
By focusing on the primary task objectives, the proposed algorithm suppresses environmental disturbances.
Experimental results demonstrate that the proposed method exhibits robustness and scalability across various typical task scenarios.
arXiv Detail & Related papers (2025-03-27T08:28:22Z) - Redefining Robot Generalization Through Interactive Intelligence [0.0]
We argue that robot foundation models must evolve to an interactive multi-agent perspective in order to handle the complexities of real-time human-robot co-adaptation.
By moving beyond single-agent designs, our position emphasizes how foundation models in robotics can achieve a more robust, personalized, and anticipatory level of performance.
arXiv Detail & Related papers (2025-02-09T17:13:27Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - Foundations of Multisensory Artificial Intelligence [32.56967614091527]
This thesis aims to advance the machine learning foundations of multisensory AI.
In the first part, we present a theoretical framework formalizing how modalities interact with each other to give rise to new information for a task.
In the second part, we study the design of practical multimodal foundation models that generalize over many modalities and tasks.
arXiv Detail & Related papers (2024-04-29T14:45:28Z) - Large Language Models Need Consultants for Reasoning: Becoming an Expert in a Complex Human System Through Behavior Simulation [5.730580726163518]
Large language models (LLMs) have demonstrated remarkable capabilities comparable to humans in fields such as mathematics, law, coding, common sense, and world knowledge.
We propose a novel reasoning framework, termed Mosaic Expert Observation Wall'' (MEOW) exploiting generative-agents-based simulation technique.
arXiv Detail & Related papers (2024-03-27T03:33:32Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - RoboCodeX: Multimodal Code Generation for Robotic Behavior Synthesis [102.1876259853457]
We propose a tree-structured multimodal code generation framework for generalized robotic behavior synthesis, termed RoboCodeX.
RoboCodeX decomposes high-level human instructions into multiple object-centric manipulation units consisting of physical preferences such as affordance and safety constraints.
To further enhance the capability to map conceptual and perceptual understanding into control commands, a specialized multimodal reasoning dataset is collected for pre-training and an iterative self-updating methodology is introduced for supervised fine-tuning.
arXiv Detail & Related papers (2024-02-25T15:31:43Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
We propose the first framework to learn control policies for vision-based human-to-robot handovers.
We show significant performance gains over baselines on a simulation benchmark, sim-to-sim transfer and sim-to-real transfer.
arXiv Detail & Related papers (2023-03-30T17:58:36Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - Learning body models: from humans to humanoids [2.855485723554975]
Humans and animals excel in combining information from multiple sensory modalities, controlling their complex bodies, adapting to growth, failures, or using tools.
Key foundation is an internal representation of the body that the agent - human, animal, or robot - has developed.
mechanisms of operation of body models in the brain are largely unknown and even less is known about how they are constructed from experience after birth.
arXiv Detail & Related papers (2022-11-06T07:30:01Z) - Multimodal foundation models are better simulators of the human brain [65.10501322822881]
We present a newly-designed multimodal foundation model pre-trained on 15 million image-text pairs.
We find that both visual and lingual encoders trained multimodally are more brain-like compared with unimodal ones.
arXiv Detail & Related papers (2022-08-17T12:36:26Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Sensorimotor representation learning for an "active self" in robots: A
model survey [10.649413494649293]
In humans, these capabilities are thought to be related to our ability to perceive our body in space.
This paper reviews the developmental processes of underlying mechanisms of these abilities.
We propose a theoretical computational framework, which aims to allow the emergence of the sense of self in artificial agents.
arXiv Detail & Related papers (2020-11-25T16:31:01Z) - ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation [75.0278287071591]
ThreeDWorld (TDW) is a platform for interactive multi-modal physical simulation.
TDW enables simulation of high-fidelity sensory data and physical interactions between mobile agents and objects in rich 3D environments.
We present initial experiments enabled by TDW in emerging research directions in computer vision, machine learning, and cognitive science.
arXiv Detail & Related papers (2020-07-09T17:33:27Z) - RoboTHOR: An Open Simulation-to-Real Embodied AI Platform [56.50243383294621]
We introduce RoboTHOR to democratize research in interactive and embodied visual AI.
We show there exists a significant gap between the performance of models trained in simulation when they are tested in both simulations and their carefully constructed physical analogs.
arXiv Detail & Related papers (2020-04-14T20:52:49Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIEN is a realistic and physics-rich simulated environment that hosts a large-scale set for articulated objects.
We evaluate state-of-the-art vision algorithms for part detection and motion attribute recognition as well as demonstrate robotic interaction tasks.
arXiv Detail & Related papers (2020-03-19T00:11:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.