Single-image reflection removal via self-supervised diffusion models
- URL: http://arxiv.org/abs/2412.20466v1
- Date: Sun, 29 Dec 2024 13:41:33 GMT
- Title: Single-image reflection removal via self-supervised diffusion models
- Authors: Zhengyang Lu, Weifan Wang, Tianhao Guo, Feng Wang,
- Abstract summary: This paper proposes a hybrid approach that combines cycle-consistency with denoising diffusion probabilistic models (DDPM) to remove reflections from single images without requiring paired training data.
Experimental results demonstrate the effectiveness of the proposed method on the SIR$2$, Flash-Based Reflection Removal (FRR) dataset, and a newly introduced Museum Reflection Removal (MRR) dataset.
- Score: 2.3838561104233342
- License:
- Abstract: Reflections often degrade the visual quality of images captured through transparent surfaces, and reflection removal methods suffers from the shortage of paired real-world samples.This paper proposes a hybrid approach that combines cycle-consistency with denoising diffusion probabilistic models (DDPM) to effectively remove reflections from single images without requiring paired training data. The method introduces a Reflective Removal Network (RRN) that leverages DDPMs to model the decomposition process and recover the transmission image, and a Reflective Synthesis Network (RSN) that re-synthesizes the input image using the separated components through a nonlinear attention-based mechanism. Experimental results demonstrate the effectiveness of the proposed method on the SIR$^2$, Flash-Based Reflection Removal (FRR) Dataset, and a newly introduced Museum Reflection Removal (MRR) dataset, showing superior performance compared to state-of-the-art methods.
Related papers
- Utilizing Multi-step Loss for Single Image Reflection Removal [0.9208007322096532]
Distorted images can negatively impact tasks like object detection and image segmentation.
We present a novel approach for image reflection removal using a single image.
arXiv Detail & Related papers (2024-12-11T17:57:25Z) - Towards Flexible Interactive Reflection Removal with Human Guidance [75.38207315080624]
Single image reflection removal is inherently ambiguous, as both the reflection and transmission components requiring separation may follow natural image statistics.
Existing methods attempt to address the issue by using various types of low-level and physics-based cues as sources of reflection signals.
In this paper, we aim to explore a novel flexible interactive reflection removal approach that leverages various forms of sparse human guidance.
arXiv Detail & Related papers (2024-06-03T17:34:37Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseRecon is a novel diffusion model-based MR reconstruction method.
It guides the generation process based on the observed signals.
It does not require additional training on specific acceleration factors.
arXiv Detail & Related papers (2022-03-08T02:25:38Z) - ReflectNet -- A Generative Adversarial Method for Single Image
Reflection Suppression [0.6980076213134382]
We propose a single image reflection removal method based on context understanding modules and adversarial training.
Our proposed reflection removal method outperforms state-of-the-art methods in terms of PSNR and SSIM on the SIR benchmark dataset.
arXiv Detail & Related papers (2021-05-11T17:33:40Z) - Iterative Gradient Encoding Network with Feature Co-Occurrence Loss for
Single Image Reflection Removal [6.370905925442655]
We propose an iterative gradient encoding network for single image reflection removal.
Our method can remove reflection favorably against the existing state-of-the-art method on all imaging settings.
arXiv Detail & Related papers (2021-03-29T19:29:29Z) - Location-aware Single Image Reflection Removal [54.93808224890273]
This paper proposes a novel location-aware deep learning-based single image reflection removal method.
We use a reflection confidence map as the cues for the network to learn how to encode the reflection information adaptively.
The integration of location information into the network significantly improves the quality of reflection removal results.
arXiv Detail & Related papers (2020-12-13T19:34:35Z) - Two-Stage Single Image Reflection Removal with Reflection-Aware Guidance [78.34235841168031]
We present a novel two-stage network with reflection-aware guidance (RAGNet) for single image reflection removal (SIRR)
RAG can be used (i) to mitigate the effect of reflection from the observation, and (ii) to generate mask in partial convolution for mitigating the effect of deviating from linear combination hypothesis.
Experiments on five commonly used datasets demonstrate the quantitative and qualitative superiority of our RAGNet in comparison to the state-of-the-art SIRR methods.
arXiv Detail & Related papers (2020-12-02T03:14:57Z) - Polarized Reflection Removal with Perfect Alignment in the Wild [66.48211204364142]
We present a novel formulation to removing reflection from polarized images in the wild.
We first identify the misalignment issues of existing reflection removal datasets.
We build a new dataset with more than 100 types of glass in which obtained transmission images are perfectly aligned with input mixed images.
arXiv Detail & Related papers (2020-03-28T13:29:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.