論文の概要: LEARNER: A Transfer Learning Method for Low-Rank Matrix Estimation
- arxiv url: http://arxiv.org/abs/2412.20605v1
- Date: Sun, 29 Dec 2024 22:26:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:04:50.235735
- Title: LEARNER: A Transfer Learning Method for Low-Rank Matrix Estimation
- Title(参考訳): LEARNER:低ランク行列推定のための伝達学習法
- Authors: Sean McGrath, Cenhao Zhu, Min Guo, Rui Duan,
- Abstract要約: 本稿では,対象個体群と対象個体群間の潜在列と列空間の類似性を利用して,対象個体群の推定を改善する手法を提案する。
LEARNERは,対象個体群と対象個体群間の遅延列と列空間の違いをペナルティ化する,対象個体群データの低ランク近似を行う。
- 参考スコア(独自算出の注目度): 5.117628843022369
- License:
- Abstract: Low-rank matrix estimation is a fundamental problem in statistics and machine learning. In the context of heterogeneous data generated from diverse sources, a key challenge lies in leveraging data from a source population to enhance the estimation of a low-rank matrix in a target population of interest. One such example is estimating associations between genetic variants and diseases in non-European ancestry groups. We propose an approach that leverages similarity in the latent row and column spaces between the source and target populations to improve estimation in the target population, which we refer to as LatEnt spAce-based tRaNsfer lEaRning (LEARNER). LEARNER is based on performing a low-rank approximation of the target population data which penalizes differences between the latent row and column spaces between the source and target populations. We present a cross-validation approach that allows the method to adapt to the degree of heterogeneity across populations. We conducted extensive simulations which found that LEARNER often outperforms the benchmark approach that only uses the target population data, especially as the signal-to-noise ratio in the source population increases. We also performed an illustrative application and empirical comparison of LEARNER and benchmark approaches in a re-analysis of a genome-wide association study in the BioBank Japan cohort. LEARNER is implemented in the R package learner.
- Abstract(参考訳): 低ランク行列推定は統計学と機械学習の基本的な問題である。
多様な情報源から生成される異種データの文脈において、重要な課題は、対象とする集団における低ランク行列の推定を強化するために、情報源からのデータを活用することである。
そのような例の1つは、非ヨーロッパ系祖先群における遺伝的変異と疾患の関連を推定することである。
本稿では,LatEnt spAce をベースとした tRaNsfer lEaRning (LEARNER) という手法を提案する。
LEARNERは,対象個体群と対象個体群間の遅延列と列空間の違いをペナルティ化する,対象個体群データの低ランク近似を行う。
本研究では,集団間の不均一性の度合いに適応できるクロスバリデーション手法を提案する。
LEARNERは、特に音源の信号-雑音比が増大するにつれて、対象個体群データのみを使用するベンチマーク手法よりも優れていることが判明した。
また,バイオバンク・ジャパンコホートにおけるゲノムワイド・アソシエーション研究の再解析において,LEARNERとベンチマーク・アプローチの実証的応用と実証的比較を行った。
LEARNERはRパッケージ学習機で実装されている。
関連論文リスト
- Transfer Learning of CATE with Kernel Ridge Regression [4.588222946914528]
カーネルリッジ回帰(KRR)を用いた条件平均処理効果(CATE)の重畳適応変換学習法を提案する。
我々は, 弱い重なり合いとCATE関数の複雑さの両方に対する適応性を強調した, 急激な非漸近的MSE境界による手法の理論的正当性を提供する。
論文 参考訳(メタデータ) (2025-02-17T01:07:45Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - MaxMin-RLHF: Alignment with Diverse Human Preferences [101.57443597426374]
Reinforcement Learning from Human Feedback (RLHF) は、言語モデルと人間の嗜好を一致させる。
予測最大化アルゴリズムを用いて嗜好分布の混合を学習し、人間の嗜好をよりよく表現する。
従来のRLHFアルゴリズムよりも16%以上の勝利率向上を実現している。
論文 参考訳(メタデータ) (2024-02-14T03:56:27Z) - Copula-based transferable models for synthetic population generation [1.370096215615823]
集団合成は、マイクロエージェントの標的集団の合成的かつ現実的な表現を生成することを含む。
従来の手法は、しばしばターゲットのサンプルに依存し、高いコストと小さなサンプルサイズのために制限に直面している。
本研究では,実験的辺縁分布のみが知られている対象個体群を対象とした合成データを生成するためのコプラに基づく新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-02-17T23:58:14Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) は、それぞれの制限を回避しつつ、両方の世界の善良な端を接続することを目的としている。
DaCは、ターゲットデータをソースライクなサンプルとターゲット固有なサンプルに分割する。
さらに、ソースライクなドメインと、メモリバンクベースの最大平均離散性(MMD)損失を用いて、ターゲット固有のサンプルとを整合させて、分散ミスマッチを低減する。
論文 参考訳(メタデータ) (2022-11-12T09:21:49Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
人口の不均一性に関する逐次的決定問題に対処するために,K-ヘテロ・マルコフ決定過程(K-ヘテロ・MDP)を導入する。
本稿では、ある政策の価値を推定するための自己クラスタ化政策評価(ACPE)と、ある政策クラスにおける最適な政策を推定するための自己クラスタ化政策イテレーション(ACPI)を提案する。
理論的な知見を裏付けるシミュレーションを行い,MIMIC-III標準データセットの実証的研究を行った。
論文 参考訳(メタデータ) (2022-01-31T20:58:47Z) - Targeted Optimal Treatment Regime Learning Using Summary Statistics [12.767669486030352]
我々は、ソースとターゲットの集団が不均一である可能性のあるITR推定問題を考える。
我々は、利用可能な要約統計を利用して、所定の対象人口に対してITRを調整する重み付けフレームワークを開発する。
具体的には,対象集団の値関数の補正された逆確率重み付き推定器を提案し,最適ITRを推定する。
論文 参考訳(メタデータ) (2022-01-17T06:11:31Z) - Targeting Underrepresented Populations in Precision Medicine: A
Federated Transfer Learning Approach [7.467496975496821]
多様な人口と複数の医療機関の異種データを統合した双方向データ統合戦略を提案する。
提案手法は, 人口の予測精度と予測精度を向上し, 人口間のモデル性能のギャップを小さくすることを示す。
論文 参考訳(メタデータ) (2021-08-27T04:04:34Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
本研究では,人口変動に対するモデルのロバスト性を評価する手法を開発した。
既存のデータセットの基盤となるクラス構造を利用して、トレーニングとテストの分散を構成するデータサブポピュレーションを制御する。
この手法をImageNetデータセットに適用し、様々な粒度のサブポピュレーションシフトベンチマークスイートを作成する。
論文 参考訳(メタデータ) (2020-08-11T17:04:47Z) - DCMD: Distance-based Classification Using Mixture Distributions on
Microbiome Data [10.171660468645603]
混合分布(DCMD)を用いた距離ベース分類のための革新的な手法を提案する。
このアプローチはサンプルデータの混合分布を推定することによりスパース数に固有の不確実性をモデル化する。
結果は、既存の機械学習や距離ベースのアプローチと比較される。
論文 参考訳(メタデータ) (2020-03-29T23:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。