Solar Filaments Detection using Active Contours Without Edges
- URL: http://arxiv.org/abs/2412.20749v1
- Date: Mon, 30 Dec 2024 06:43:22 GMT
- Title: Solar Filaments Detection using Active Contours Without Edges
- Authors: Sanmoy Bandyopadhyay, Vaibhav Pant,
- Abstract summary: An active contours without edges (ACWE)-based algorithm has been proposed for the detection of solar filaments in H-alpha full-disk solar images.
The proposed algorithm has been applied to few benchmark datasets and has been compared with the classical technique of object detection.
- Score: 15.699822139827916
- License:
- Abstract: In this article, an active contours without edges (ACWE)-based algorithm has been proposed for the detection of solar filaments in H-alpha full-disk solar images. The overall algorithm consists of three main steps of image processing. These are image pre-processing, image segmentation, and image post-processing. Here in the work, contours are initialized on the solar image and allowed to deform based on the energy function. As soon as the contour reaches the boundary of the desired object, the energy function gets reduced, and the contour stops evolving. The proposed algorithm has been applied to few benchmark datasets and has been compared with the classical technique of object detection. The results analysis indicates that the proposed algorithm outperforms the results obtained using the existing classical algorithm of object detection.
Related papers
- EDCSSM: Edge Detection with Convolutional State Space Model [3.649463841174485]
Edge detection in images is the foundation of many complex tasks in computer graphics.
Due to the feature loss caused by multi-layer convolution and pooling architectures, learning-based edge detection models often produce thick edges.
This paper presents an edge detection algorithm which effectively addresses the aforementioned issues.
arXiv Detail & Related papers (2024-09-03T05:13:25Z) - Deep Richardson-Lucy Deconvolution for Low-Light Image Deblurring [48.80983873199214]
We develop a data-driven approach to model the saturated pixels by a learned latent map.
Based on the new model, the non-blind deblurring task can be formulated into a maximum a posterior (MAP) problem.
To estimate high-quality deblurred images without amplified artifacts, we develop a prior estimation network.
arXiv Detail & Related papers (2023-08-10T12:53:30Z) - $PC^2$: Projection-Conditioned Point Cloud Diffusion for Single-Image 3D
Reconstruction [97.06927852165464]
Reconstructing the 3D shape of an object from a single RGB image is a long-standing and highly challenging problem in computer vision.
We propose a novel method for single-image 3D reconstruction which generates a sparse point cloud via a conditional denoising diffusion process.
arXiv Detail & Related papers (2023-02-21T13:37:07Z) - Dilated filters for edge detection algorithms [0.0]
Dilated convolution have impressive results in machine learning.
We discuss here the idea of dilating the standard filters which are used in edge detection algorithms.
arXiv Detail & Related papers (2021-06-14T12:52:17Z) - A Novel Falling-Ball Algorithm for Image Segmentation [0.14337588659482517]
Region-based Falling-Ball algorithm is presented, which is a region-based segmentation algorithm.
The proposed algorithm detects the catchment basins by assuming that a ball falling from hilly terrains will stop in a catchment basin.
arXiv Detail & Related papers (2021-05-06T12:41:10Z) - Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD
Images [69.5662419067878]
Grounding referring expressions in RGBD image has been an emerging field.
We present a novel task of 3D visual grounding in single-view RGBD image where the referred objects are often only partially scanned due to occlusion.
Our approach first fuses the language and the visual features at the bottom level to generate a heatmap that localizes the relevant regions in the RGBD image.
Then our approach conducts an adaptive feature learning based on the heatmap and performs the object-level matching with another visio-linguistic fusion to finally ground the referred object.
arXiv Detail & Related papers (2021-03-14T11:18:50Z) - Scale Normalized Image Pyramids with AutoFocus for Object Detection [75.71320993452372]
A scale normalized image pyramid (SNIP) is generated that, like human vision, only attends to objects within a fixed size range at different scales.
We propose an efficient spatial sub-sampling scheme which only operates on fixed-size sub-regions likely to contain objects.
The resulting algorithm is referred to as AutoFocus and results in a 2.5-5 times speed-up during inference when used with SNIP.
arXiv Detail & Related papers (2021-02-10T18:57:53Z) - Learned Block Iterative Shrinkage Thresholding Algorithm for
Photothermal Super Resolution Imaging [52.42007686600479]
We propose a learned block-sparse optimization approach using an iterative algorithm unfolded into a deep neural network.
We show the benefits of using a learned block iterative shrinkage thresholding algorithm that is able to learn the choice of regularization parameters.
arXiv Detail & Related papers (2020-12-07T09:27:16Z) - Contour Integration using Graph-Cut and Non-Classical Receptive Field [4.935491924643742]
We propose a novel method to detect image contours from the extracted edge segments of other algorithms.
The proposed energy functions are inspired by the surround modulation in the primary visual cortex that help suppressing texture noise.
arXiv Detail & Related papers (2020-10-27T19:07:13Z) - Automatic Radish Wilt Detection Using Image Processing Based Techniques
and Machine Learning Algorithm [3.4392739159262145]
We propose a segmentation and extraction-based technique to detect fusarium wilt in radish crops.
Recent wilt detection algorithms are either based on image processing techniques or conventional machine learning algorithms.
Our methodology is based on a hybrid algorithm, which combines image processing and machine learning.
arXiv Detail & Related papers (2020-09-01T01:37:01Z) - Saliency Enhancement using Gradient Domain Edges Merging [65.90255950853674]
We develop a method to merge the edges with the saliency maps to improve the performance of the saliency.
This leads to our proposed saliency enhancement using edges (SEE) with an average improvement of at least 3.4 times higher on the DUT-OMRON dataset.
The SEE algorithm is split into 2 parts, SEE-Pre for preprocessing and SEE-Post pour postprocessing.
arXiv Detail & Related papers (2020-02-11T14:04:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.