Symmetry-enforced minimal entanglement and correlation in quantum spin chains
- URL: http://arxiv.org/abs/2412.20765v1
- Date: Mon, 30 Dec 2024 07:22:18 GMT
- Title: Symmetry-enforced minimal entanglement and correlation in quantum spin chains
- Authors: Kangle Li, Liujun Zou,
- Abstract summary: We study the minimal entanglement and correlation enforced by the $SO(3)$ spin rotation symmetry and lattice translation symmetry in a quantum spin-$J$ chain.
We show that no state in a quantum spin-$J$ chain with these symmetries can have a vanishing correlation length.
- Score: 0.6906005491572401
- License:
- Abstract: The interplay between symmetry, entanglement and correlation is an interesting and important topic in quantum many-body physics. Within the framework of matrix product states, in this paper we study the minimal entanglement and correlation enforced by the $SO(3)$ spin rotation symmetry and lattice translation symmetry in a quantum spin-$J$ chain, with $J$ a positive integer. When neither symmetry is spontaneously broken, for a sufficiently long segment in a sufficiently large closed chain, we find that the minimal R\'enyi-$\alpha$ entropy compatible with these symmetries is $\min\{ -\frac{2}{\alpha-1}\ln(\frac{1}{2^\alpha}({1+\frac{1}{(2J+1)^{\alpha-1}}})), 2\ln(J+1) \}$, for any $\alpha\in\mathbb{R}^+$. In an infinitely long open chain with such symmetries, for any $\alpha\in\mathbb{R}^+$ the minimal R\'enyi-$\alpha$ entropy of half of the system is $\min\{ -\frac{1}{\alpha-1}\ln(\frac{1}{2^\alpha}({1+\frac{1}{(2J+1)^{\alpha-1}}})), \ln(J+1) \}$. When $\alpha\rightarrow 1$, these lower bounds give the symmetry-enforced minimal von Neumann entropies in these setups. Moreover, we show that no state in a quantum spin-$J$ chain with these symmetries can have a vanishing correlation length. Interestingly, the states with the minimal entanglement may not be a state with the minimal correlation length.
Related papers
- A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Smooth min-entropy lower bounds for approximation chains [0.0]
We prove a simple entropic triangle inequality, which allows us to bound the smooth min-entropy of a state in terms of the R'enyi entropy of an arbitrary auxiliary state.
Using this triangle inequality, we create lower bounds for the smooth min-entropy of a state in terms of the entropies of its approximation chain in various scenarios.
arXiv Detail & Related papers (2023-08-22T18:55:16Z) - Average pure-state entanglement entropy in spin systems with SU(2)
symmetry [0.0]
We study the effect that the SU(2) symmetry, and the rich Hilbert space structure that it generates in lattice spin systems, has on the average entanglement entropy of local Hamiltonians and of random pure states.
We provide numerical evidence that $s_A$ is smaller in highly excited eigenstates of integrable interacting Hamiltonians.
In the context of Hamiltonian eigenstates we consider spins $mathfrakj=frac12$ and $1$, while for our calculations based on random pure states we focus on the spin $mathfrakj=frac12$ case
arXiv Detail & Related papers (2023-05-18T18:00:00Z) - Monogamy of entanglement between cones [68.8204255655161]
We show that monogamy is not only a feature of quantum theory, but that it characterizes the minimal tensor product of general pairs of convex cones.
Our proof makes use of a new characterization of products of simplices up to affine equivalence.
arXiv Detail & Related papers (2022-06-23T16:23:59Z) - Symmetry-resolved entanglement entropy in critical free-fermion chains [0.0]
symmetry-resolved R'enyi entanglement entropy is known to have rich theoretical connections to conformal field theory.
We consider a class of critical quantum chains with a microscopic U(1) symmetry.
For the density matrix, $rho_A$, of subsystems of $L$ neighbouring sites we calculate the leading terms in the large $L$ expansion of the symmetry-resolved R'enyi entanglement entropies.
arXiv Detail & Related papers (2022-02-23T19:00:03Z) - Global Convergence of Gradient Descent for Asymmetric Low-Rank Matrix
Factorization [49.090785356633695]
We study the asymmetric low-rank factorization problem: [mathbfU in mathbbRm min d, mathbfU$ and mathV$.
arXiv Detail & Related papers (2021-06-27T17:25:24Z) - Fermion and meson mass generation in non-Hermitian Nambu--Jona-Lasinio
models [77.34726150561087]
We investigate the effects of non-Hermiticity on interacting fermionic systems.
We do this by including non-Hermitian bilinear terms into the 3+1 dimensional Nambu--Jona-Lasinio (NJL) model.
arXiv Detail & Related papers (2021-02-02T13:56:11Z) - Diffusion and operator entanglement spreading [0.0]
We argue that for integrable models the dynamics of the $OSEE$ is related to the diffusion of the underlying quasiparticles.
We numerically check that the bound is saturated in the rule $54$ chain, which is representative of interacting integrable systems.
We show that strong finite-time effects are present, which prevent from probing the behavior of the $OSEE$.
arXiv Detail & Related papers (2020-06-04T11:28:39Z) - Non-Hermitian extension of the Nambu--Jona-Lasinio model in 3+1 and 1+1
dimensions [68.8204255655161]
We present a non-Hermitian PT-symmetric extension of the Nambu--Jona-Lasinio model of quantum chromodynamics in 3+1 and 1+1 dimensions.
We find that in both cases, in 3+1 and in 1+1 dimensions, the inclusion of a non-Hermitian bilinear term can contribute to the generated mass.
arXiv Detail & Related papers (2020-04-08T14:29:36Z) - R\'{e}nyi and Tsallis entropies of the Dirichlet and Neumann
one-dimensional quantum wells [0.0]
Dirichlet and Neumann boundary conditions (BCs) of 1D quantum well are studied.
For either BC the dependencies of the R'enyi position components on the parameter $alpha$ are the same for all orbitals.
The gap between the thresholds $alpha_TH$ of the two BCs causes different behavior of the R'enyi uncertainty relations as functions of $alpha$.
arXiv Detail & Related papers (2020-03-09T18:34:00Z) - Curse of Dimensionality on Randomized Smoothing for Certifiable
Robustness [151.67113334248464]
We show that extending the smoothing technique to defend against other attack models can be challenging.
We present experimental results on CIFAR to validate our theory.
arXiv Detail & Related papers (2020-02-08T22:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.