論文の概要: A Tale of Two Imperatives: Privacy and Explainability
- arxiv url: http://arxiv.org/abs/2412.20798v2
- Date: Tue, 31 Dec 2024 16:13:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-03 11:36:47.827872
- Title: A Tale of Two Imperatives: Privacy and Explainability
- Title(参考訳): 2つのインペラティブの物語:プライバシと説明可能性
- Authors: Supriya Manna, Niladri Sett,
- Abstract要約: 科学分野におけるディープラーニングの優位性は、高い意思決定を形作っている。
本稿では,RTP(Right-to-Privacy)とRTE(Right-to-Explanation)を組み合わせる複雑さについて検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Deep learning's preponderance across scientific domains has reshaped high-stakes decision-making, making it essential to follow rigorous operational frameworks that include both Right-to-Privacy (RTP) and Right-to-Explanation (RTE). This paper examines the complexities of combining these two requirements. For RTP, we focus on `Differential privacy' (DP), which is considered the current \textit{gold standard} for privacy-preserving machine learning due to its strong quantitative guarantee of privacy. For RTE, we focus on post-hoc explainers: they are the \textit{go-to} option for model auditing as they operate independently of model training. We formally investigate DP models and various commonly-used post-hoc explainers: how to evaluate these explainers subject to RTP, and analyze the intrinsic interactions between DP models and these explainers. Furthermore, our work throws light on how RTP and RTE can be effectively combined in high-stakes applications. Our study concludes by outlining an industrial software pipeline, with the example of a wildly used use-case, that respects both RTP and RTE requirements.
- Abstract(参考訳): 科学的領域におけるディープラーニングの優位性は、高い意思決定を形作っており、RTP(Right-to-Privacy)とRTE(Right-to-Explanation)の両方を含む厳格な運用フレームワークに従うことが不可欠である。
本稿では,これら2つの要件を組み合わせる複雑さについて検討する。
RTPでは、プライバシーの量的保証が強いため、プライバシを保存する機械学習の現在の \textit{gold standard} であると考えられる 'Differential Privacy' (DP) に焦点を当てる。
RTEでは、モデルトレーニングとは無関係に動作するので、モデル監査のための \textit{go-to} オプションである。
本稿では, DPモデルと多種多種多種多種多種多種多種多種多種多種多種多種多型について検討し, DPモデルと多種多種多種多種多種多種多種多型・多種多種多種多型・多種多種多型・多種多種多種多型・多種多種多種多型・多種多種多種多型・多種多種多型・多種多種多種多種多種多型・多種多種多種多種多型・多種多種多種多種多種多型・多種多種多種多種多種多種多種多種多種多型・多種多種多種多種多種多種多種多種多種
さらに、我々の研究は、RTPとRTEを高精細なアプリケーションで効果的に組み合わせられる方法に光を当てています。
我々の研究は、産業用ソフトウェアパイプラインの概要を、RTPとRTEの要件の両方を尊重する、非常に使われているユースケースの例にまとめて締めくくります。
関連論文リスト
- ReasoningRank: Teaching Student Models to Rank through Reasoning-Based Knowledge Distillation [11.756344944226495]
本稿では、透明性を高める新しいオープンソースリグレードアプローチであるReason-to-Rank(R2R)を提案する。
R2Rは2つのタイプの推論を生成する: 直接関連推論(direct relevance reasoning) - ドキュメントがクエリにどのように対処するかを説明する。
学生モデルは、有意義な推論と文書の書き直しを訓練し、複数のデータセットにまたがる競争性能を達成する。
論文 参考訳(メタデータ) (2024-10-07T16:25:39Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) は、外部コンテキスト情報を大言語モデル(LLM)と統合し、事実の精度と妥当性を高めるパラダイムである。
SFR-RAG(SFR-RAG)について述べる。
また、複数の人気かつ多様なRAGベンチマークをコンパイルする新しい評価フレームワークであるConBenchについても紹介する。
論文 参考訳(メタデータ) (2024-09-16T01:08:18Z) - Demystifying Reinforcement Learning in Production Scheduling via Explainable AI [0.7515066610159392]
深層強化学習(Dep Reinforcement Learning, DRL)はスケジューリング問題の解法としてよく用いられる手法である。
DRLエージェントは、短い計算時間で実行可能な結果を提供するのが得意だが、その推論はいまだに不透明である。
フロー生産における特殊DRLエージェントのスケジューリング決定の背後にある理由を説明するために,2つの説明可能なAI(xAI)フレームワークを適用した。
論文 参考訳(メタデータ) (2024-08-19T09:39:01Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender system (RS) は、埋め込みベクトルによって符号化される分類的特徴に依存し、結果として非常に大きな埋め込みテーブルとなる。
軽量埋め込み型RSの繁栄にもかかわらず、評価プロトコルには幅広い多様性が見られる。
本研究では, LERSの性能, 効率, クロスタスク転送性について, 徹底的なベンチマークによる検討を行った。
論文 参考訳(メタデータ) (2024-06-25T07:45:00Z) - Leveraging Counterfactual Paths for Contrastive Explanations of POMDP Policies [2.4332936182093197]
XAIは、エージェント行動の説明を提供することで、混乱を減らし、システムの信頼を高めることを目的としている。
POMDPは、遷移と状態の不確実性を推論できる柔軟なフレームワークを提供する。
本研究は,POMDPポリシーの対照的な説明を生成するために,ユーザが提供する反ファクトファクトの活用について検討する。
論文 参考訳(メタデータ) (2024-03-28T18:19:38Z) - Benchmarking Deep Facial Expression Recognition: An Extensive Protocol
with Balanced Dataset in the Wild [5.044138778500218]
顔表情認識(FER)は、人間とコンピュータの相互作用において重要な部分である。
我々は,クロスドメイン検証のための新しい顔表情データセットを収集した。
ネットワークアーキテクチャを分類し、実際のシナリオにディープFERメソッドをデプロイする際の推奨事項をまとめた。
論文 参考訳(メタデータ) (2023-11-06T06:48:49Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
本稿では,これらの課題に対処するために,13Bパラメータを持つ生成判断器Auto-Jを提案する。
我々のモデルは,大規模な実環境シナリオ下でのユーザクエリとLLM生成応答に基づいて訓練されている。
実験的に、Auto-Jはオープンソースモデルとクローズドソースモデルの両方を含む、強力なライバルのシリーズを上回っている。
論文 参考訳(メタデータ) (2023-10-09T07:27:15Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Flexible Job Shop Scheduling via Dual Attention Network Based
Reinforcement Learning [73.19312285906891]
フレキシブルなジョブショップスケジューリング問題(FJSP)では、複数のマシンで操作を処理でき、操作とマシンの間の複雑な関係が生じる。
近年, 深層強化学習(DRL)を用いて, FJSP解決のための優先派遣規則(PDR)を学習している。
本稿では,Deep機能抽出のための自己注意モデルと,スケーラブルな意思決定のためのDRLの利点を生かした,エンドツーエンド学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-09T01:35:48Z) - Benchmarking Constraint Inference in Inverse Reinforcement Learning [19.314352936252444]
多くの実世界の問題において、専門家が従う制約は、RLエージェントに数学的に、未知に指定することがしばしば困難である。
本稿では,ロボット制御と自律運転という2つの主要なアプリケーション領域の文脈において,CIRLベンチマークを構築する。
CIRLアルゴリズムのパフォーマンスを再現するための情報を含むこのベンチマークは、https://github.com/Guiliang/CIRL-benchmarks-publicで公開されている。
論文 参考訳(メタデータ) (2022-06-20T09:22:20Z) - DEPARA: Deep Attribution Graph for Deep Knowledge Transferability [91.06106524522237]
本稿では,PR-DNNから学んだ知識の伝達可能性を検討するために,DreP Attribution gRAph (DEPARA)を提案する。
DEPARAでは、ノードは入力に対応し、PR-DNNの出力に関してベクトル化された属性マップで表現される。
2つのPR-DNNの知識伝達性は、対応するDEPARAの類似性によって測定される。
論文 参考訳(メタデータ) (2020-03-17T02:07:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。