論文の概要: Fine-Tuning TransMorph with Gradient Correlation for Anatomical Alignment
- arxiv url: http://arxiv.org/abs/2412.20822v1
- Date: Mon, 30 Dec 2024 09:32:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:02:07.029709
- Title: Fine-Tuning TransMorph with Gradient Correlation for Anatomical Alignment
- Title(参考訳): 解剖学的アライメントのための勾配相関を有する微調整トランスモルフ
- Authors: Lukas Förner, Kartikay Tehlan, Thomas Wendler,
- Abstract要約: 教師なしディープラーニングは、解剖学的ラベルへの依存を減らすために、脳MRI登録において有望な方法である。
本稿では,Learner2Reg2024 LUMIR問題に対して,コンバージェンス安定性と変形性を改善するために,事前学習したTransMorphモデルの微調整を提案する。
- 参考スコア(独自算出の注目度): 0.6359529834975265
- License:
- Abstract: Unsupervised deep learning is a promising method in brain MRI registration to reduce the reliance on anatomical labels, while still achieving anatomically accurate transformations. For the Learn2Reg2024 LUMIR challenge, we propose fine-tuning of the pre-trained TransMorph model to improve the convergence stability as well as the deformation smoothness. The former is achieved through the FAdam optimizer, and consistency in structural changes is incorporated through the addition of gradient correlation in the similarity measure, improving anatomical alignment. The results show slight improvements in the Dice and HdDist95 scores, and a notable reduction in the NDV compared to the baseline TransMorph model. These are also confirmed by inspecting the boundaries of the tissue. Our proposed method highlights the effectiveness of including Gradient Correlation to achieve smoother and structurally consistent deformations for interpatient brain MRI registration.
- Abstract(参考訳): 教師なしディープラーニングは、解剖学的に正確な変換をしながら、解剖学的ラベルへの依存を減らすために、脳MRI登録において有望な方法である。
本稿では,Learner2Reg2024 LUMIR問題に対して,コンバージェンス安定性と変形滑らか性を改善するために,事前学習したTransMorphモデルの微調整を提案する。
前者はFAdamオプティマイザにより達成され、類似度測定における勾配相関の追加により構造変化の一貫性が組み込まれ、解剖学的アライメントが向上する。
その結果、DiceとHdDist95のスコアはわずかに改善され、ベースラインのTransMorphモデルと比較してNDVは顕著に低下した。
また、これらは組織の境界を検査することによって確認される。
提案手法は, 患者間脳MRI登録において, よりスムーズで構造的に一貫した変形を実現するために, グラディエント相関を含めることの有効性を強調した。
関連論文リスト
- Adaptive Aggregation Weights for Federated Segmentation of Pancreas MRI [5.631060921219683]
フェデレートラーニング(FL)は、機密データを共有することなく、機関間で協調的なモデルトレーニングを可能にする。
フェデレート平均化(FedAvg)のような従来のFLメソッドは、ドメイン間の一般化において困難に直面している。
本稿では適応的なアグリゲーション重みを取り入れた新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-29T20:53:01Z) - AC-Norm: Effective Tuning for Medical Image Analysis via Affine
Collaborative Normalization [11.224435413938375]
Affine Collaborative Normalization (AC-Norm) が提案されている。
AC-Normは、クロスドメインチャネルワイズ相関に基づいてターゲットモデルのチャネルを動的に再分類する。
我々は,AC-Normがバニラファインタニングを最大4%改善したことを実証した。
論文 参考訳(メタデータ) (2023-07-28T03:27:25Z) - GSMorph: Gradient Surgery for cine-MRI Cardiac Deformable Registration [62.41725951450803]
学習に基づく変形可能な登録は、フィールドの登録精度と滑らかさをトレードオフする重み付けされた目的関数に依存する。
我々は,GSMorphと呼ばれる勾配手術機構に基づく登録モデルを構築し,複数の損失に対してパラメータフリーな高バランスを実現する。
提案手法はモデルに依存しないため,パラメータの追加や推論の遅延を伴わずに,任意のディープ登録ネットワークにマージすることができる。
論文 参考訳(メタデータ) (2023-06-26T13:32:09Z) - CDIDN: A Registration Model with High Deformation Impedance Capability
for Long-Term Tracking of Pulmonary Lesion Dynamics [9.253798333911341]
本稿では,医療用CT画像の登録問題について,新しい視点から検討する。
我々はCascade-Dilation Inter-Layer Differential Network (CDIDN)と呼ばれる新しい登録モデルを提案する。
高い変形能力(DIC)と精度を示す。
論文 参考訳(メタデータ) (2023-05-18T15:05:55Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - 3D Inception-Based TransMorph: Pre- and Post-operative Multi-contrast
MRI Registration in Brain Tumors [1.2234742322758418]
InceptionモデルとTransMorphモデルに基づく2段階カスケードネットワークを提案する。
ロス関数は、標準画像類似度測定器、拡散正則化器、および強度依存を克服するために付加されたエッジマップ類似度測定器から構成された。
BraTS-Regチャレンジの最終テストフェーズでは,モデル提出時に6位を獲得しました。
論文 参考訳(メタデータ) (2022-12-08T22:00:07Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Weakly-supervised Biomechanically-constrained CT/MRI Registration of the
Spine [72.85011943179894]
本稿では,各脊椎の剛性と容積を保存し,登録精度を最大化しながら,弱教師付き深層学習フレームワークを提案する。
また,CTにおける椎体自動分節化はMRIと対比してより正確な結果をもたらすため,CTラベルマップのみに依存するよう,これらの損失を特に設計する。
以上の結果から, 解剖学的認識による損失の増大は, 精度を維持しつつも, 推測変換の妥当性を高めることが示唆された。
論文 参考訳(メタデータ) (2022-05-16T10:59:55Z) - Symmetry-Enhanced Attention Network for Acute Ischemic Infarct
Segmentation with Non-Contrast CT Images [50.55978219682419]
急性虚血性梗塞セグメンテーションのための対称性増強型注意ネットワーク(SEAN)を提案する。
提案するネットワークは、入力されたCT画像を、脳組織が左右対称な標準空間に自動的に変換する。
提案したSEANは、ダイス係数と梗塞局所化の両方の観点から、対称性に基づく最先端の手法より優れている。
論文 参考訳(メタデータ) (2021-10-11T07:13:26Z) - Learning Multi-Modal Volumetric Prostate Registration with Weak
Inter-Subject Spatial Correspondence [2.6894568533991543]
MRシークエンスにおける前立腺の位置に関する事前情報のための補助入力をニューラルネットワークに導入する。
MR-TRUS前立腺データのラベルが弱いことから,最先端のディープラーニング手法に匹敵する登録品質を示した。
論文 参考訳(メタデータ) (2021-02-09T16:48:59Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。