論文の概要: Acquisition-Independent Deep Learning for Quantitative MRI Parameter Estimation using Neural Controlled Differential Equations
- arxiv url: http://arxiv.org/abs/2412.20844v1
- Date: Mon, 30 Dec 2024 10:24:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:04:11.903751
- Title: Acquisition-Independent Deep Learning for Quantitative MRI Parameter Estimation using Neural Controlled Differential Equations
- Title(参考訳): ニューラル制御微分方程式を用いた定量的MRIパラメータ推定のための獲得非依存ディープラーニング
- Authors: Daan Kuppens, Sebastiano Barbieri, Daisy van den Berg, Pepijn Schouten, Harriet C. Thoeny, Myrte Wennen, Oliver J. Gurney-Champion,
- Abstract要約: NCDEはQMRIパラメータの正確な予測のための汎用ツールとして機能することを示す。
これらの結果は,NCDEが信頼性QMRIパラメータ推定に頑健なアプローチを提供することを示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Deep learning has proven to be a suitable alternative to least-squares (LSQ) fitting for parameter estimation in various quantitative MRI (QMRI) models. However, current deep learning implementations are not robust to changes in MR acquisition protocols. In practice, QMRI acquisition protocols differ substantially between different studies and clinical settings. The lack of generalizability and adoptability of current deep learning approaches for QMRI parameter estimation impedes the implementation of these algorithms in clinical trials and clinical practice. Neural Controlled Differential Equations (NCDEs) allow for the sampling of incomplete and irregularly sampled data with variable length, making them ideal for use in QMRI parameter estimation. In this study, we show that NCDEs can function as a generic tool for the accurate prediction of QMRI parameters, regardless of QMRI sequence length, configuration of independent variables and QMRI forward model (variable flip angle T1-mapping, intravoxel incoherent motion MRI, dynamic contrast-enhanced MRI). NCDEs achieved lower mean squared error than LSQ fitting in low-SNR simulations and in vivo in challenging anatomical regions like the abdomen and leg, but this improvement was no longer evident at high SNR. NCDEs reduce estimation error interquartile range without increasing bias, particularly under conditions of high uncertainty. These findings suggest that NCDEs offer a robust approach for reliable QMRI parameter estimation, especially in scenarios with high uncertainty or low image quality. We believe that with NCDEs, we have solved one of the main challenges for using deep learning for QMRI parameter estimation in a broader clinical and research setting.
- Abstract(参考訳): 深層学習は、様々な定量的MRI(QMRI)モデルにおいて、パラメータ推定のための最小二乗法(LSQ)の代替となることが証明されている。
しかし、現在のディープラーニング実装は、MR取得プロトコルの変更に対して堅牢ではない。
実際には、QMRIの取得プロトコルは、異なる研究と臨床設定で大きく異なる。
QMRIパラメータ推定における現在のディープラーニングアプローチの一般化可能性の欠如は、これらのアルゴリズムの臨床試験および臨床実践における実装を妨げている。
ニューラル制御微分方程式(NCDE)は、不完全で不規則にサンプリングされたデータを可変長でサンプリングし、QMRIパラメータ推定に使用するのに最適である。
本研究では,QMRIのシーケンス長,独立変数の設定,QMRI前方モデル(可変フリップ角T1マッピング,ボクセル内非コヒーレント運動MRI,ダイナミックコントラスト強調MRI)にかかわらず,NCDEがQMRIパラメータの正確な予測のための汎用ツールとして機能することを示す。
NCDEは低SNRシミュレーションではLSQよりも平均2乗誤差が低く, 腹部, 脚などの解剖学的障害部位ではin vivoで認められたが, 高SNRでは改善は認められなかった。
NCDEは、特に不確実性の高い条件下で、バイアスを増大させることなく、推定誤差間距離を減少させる。
これらの結果から,NCDEは信頼性の高いQMRIパラメータ推定に対して,特に不確実性や画像品質の低いシナリオにおいて堅牢なアプローチを提供する可能性が示唆された。
我々は,NCDEを用いて,より広い臨床・研究環境において,QMRIパラメータ推定にディープラーニングを用いる上での課題の1つを解決したと信じている。
関連論文リスト
- MRI Parameter Mapping via Gaussian Mixture VAE: Breaking the Assumption of Independent Pixels [3.720246718519987]
我々はMRIにおける定量的パラメータマッピングの新しいパラダイムを導入し、実証する。
独立画素の仮定を破る自己教師型深部変分法を提案する。
そこで本手法は,dMRIやqMRIなどのパラメータマッピング手法の臨床応用を支援することができる。
論文 参考訳(メタデータ) (2024-11-16T11:11:36Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - qMRI Diffuser: Quantitative T1 Mapping of the Brain using a Denoising Diffusion Probabilistic Model [1.1278063431495107]
定量的MRI(qMRI)は、組織特性に関連する客観的パラメータを提供することにより、重み付け画像よりも大きな利点を提供する。
深層学習に基づく手法は、一連の重み付き画像から定量的マップを推定する効果を実証している。
深部生成モデルを用いたqMRIの新しい手法であるqMRIディフューザを提案する。
論文 参考訳(メタデータ) (2024-07-23T13:49:19Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - Robust MRI Reconstruction by Smoothed Unrolling (SMUG) [17.391075587858058]
SMUG(Smoothed Unrolling)と呼ばれる新しい画像再構成フレームワークを提案する。
SMUGは、ランダムスムーシング(RS)に基づく頑健な学習アプローチを用いて、ディープアンローリングに基づくMRI再構成モデルを前進させる。
我々は,SMUGがMRI再建の堅牢性を向上させることを示し,様々な不安定源のセットについて述べる。
論文 参考訳(メタデータ) (2023-12-12T22:57:14Z) - Fast Controllable Diffusion Models for Undersampled MRI Reconstruction [9.257507373275288]
本研究は,MRIのアンダーサンプル再構成のための拡散モデルの制御可能な生成を促進させる,Predictor-Projector-Noisor (PPN) と呼ばれる新しいアルゴリズムを提案する。
以上の結果から, PPNは, 他の制御可能なサンプリング法に比べて, 再構成時間を大幅に短縮した, アンサンプ付きk空間計測に適合した高忠実MR画像を生成することがわかった。
論文 参考訳(メタデータ) (2023-11-20T05:58:05Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
拡散モデルは、高い試料品質のため、MRIの再生を加速するために人気を博している。
推論時に柔軟にフォワードモデルを組み込んだまま、効果的にリッチなデータプリエントとして機能することができる。
拡散モデル(SMRD)を用いたSUREに基づくMRI再構成を導入し,テスト時の堅牢性を向上する。
論文 参考訳(メタデータ) (2023-10-03T05:05:35Z) - GSMorph: Gradient Surgery for cine-MRI Cardiac Deformable Registration [62.41725951450803]
学習に基づく変形可能な登録は、フィールドの登録精度と滑らかさをトレードオフする重み付けされた目的関数に依存する。
我々は,GSMorphと呼ばれる勾配手術機構に基づく登録モデルを構築し,複数の損失に対してパラメータフリーな高バランスを実現する。
提案手法はモデルに依存しないため,パラメータの追加や推論の遅延を伴わずに,任意のディープ登録ネットワークにマージすることができる。
論文 参考訳(メタデータ) (2023-06-26T13:32:09Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
我々は,モデル不連続な不確かさを定量化するベイズ変分フレームワークを提案する。
提案手法はMRIのアンダーサンプを用いた再建術の術後成績を示す。
論文 参考訳(メタデータ) (2021-02-12T18:08:14Z) - Physics-informed neural networks for myocardial perfusion MRI
quantification [3.318100528966778]
本研究では, 心筋灌流MR定量化のための物理インフォームドニューラルネットワーク(PINN)を提案する。
PINNは、基礎となる物理保存法則を尊重しながら、観測された拡散MRデータに適合するように訓練することができる。
論文 参考訳(メタデータ) (2020-11-25T16:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。