Rethinking Aleatoric and Epistemic Uncertainty
- URL: http://arxiv.org/abs/2412.20892v2
- Date: Mon, 30 Jun 2025 10:42:51 GMT
- Title: Rethinking Aleatoric and Epistemic Uncertainty
- Authors: Freddie Bickford Smith, Jannik Kossen, Eleanor Trollope, Mark van der Wilk, Adam Foster, Tom Rainforth,
- Abstract summary: We present a decision-theoretic perspective that relates rigorous notions of uncertainty, predictive performance and statistical dispersion in data.<n>We provide insights into popular information-theoretic quantities, showing they can be poor estimators of what they are often purported to measure.
- Score: 27.424543269616386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ideas of aleatoric and epistemic uncertainty are widely used to reason about the probabilistic predictions of machine-learning models. We identify incoherence in existing discussions of these ideas and suggest this stems from the aleatoric-epistemic view being insufficiently expressive to capture all the distinct quantities that researchers are interested in. To address this we present a decision-theoretic perspective that relates rigorous notions of uncertainty, predictive performance and statistical dispersion in data. This serves to support clearer thinking as the field moves forward. Additionally we provide insights into popular information-theoretic quantities, showing they can be poor estimators of what they are often purported to measure, while also explaining how they can still be useful in guiding data acquisition.
Related papers
- The Curious Case of Arbitrariness in Machine Learning [4.932130498861987]
Algorithmic modelling relies on limited information in data to extrapolate outcomes for unseen scenarios, often embedding an element of arbitrariness in its decisions.
A perspective on this arbitrariness that has recently gained interest is multiplicity-the study of arbitrariness across a set of "good models"
We systemize the literature on multiplicity by: (a) formalizing the terminology around model design choices and their contribution to arbitrariness, (b) expanding the definition of multiplicity to incorporate underrepresented forms beyond just predictions and explanations, and (d) distilling the benefits and potential risks of multiplicity
arXiv Detail & Related papers (2025-01-24T22:45:09Z) - Uncertainties of Latent Representations in Computer Vision [2.33877878310217]
This thesis makes uncertainty estimates easily accessible by adding them to the latent representation vectors of pretrained computer vision models.
We show that these unobservable uncertainties about unobservable latent representations are indeed provably correct.
arXiv Detail & Related papers (2024-08-26T14:02:30Z) - To Believe or Not to Believe Your LLM [51.2579827761899]
We explore uncertainty quantification in large language models (LLMs)
We derive an information-theoretic metric that allows to reliably detect when only epistemic uncertainty is large.
We conduct a series of experiments which demonstrate the advantage of our formulation.
arXiv Detail & Related papers (2024-06-04T17:58:18Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
We propose a new estimation method by actively de-noising the observed data.
By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
arXiv Detail & Related papers (2023-12-16T14:59:11Z) - Model-agnostic variable importance for predictive uncertainty: an entropy-based approach [1.912429179274357]
We show how existing methods in explainability can be extended to uncertainty-aware models.
We demonstrate the utility of these approaches to understand both the sources of uncertainty and their impact on model performance.
arXiv Detail & Related papers (2023-10-19T15:51:23Z) - Invariant Probabilistic Prediction [45.90606906307022]
We show that arbitrary distribution shifts do not, in general, admit invariant and robust probabilistic predictions.
We propose a method to yield invariant probabilistic predictions, called IPP, and study the consistency of the underlying parameters.
arXiv Detail & Related papers (2023-09-18T18:50:24Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Model-free generalized fiducial inference [0.0]
I propose and develop ideas for a model-free statistical framework for imprecise probabilistic prediction inference.
This framework facilitates uncertainty quantification in the form of prediction sets that offer finite sample control of type 1 errors.
I consider the theoretical and empirical properties of a precise probabilistic approximation to the model-free imprecise framework.
arXiv Detail & Related papers (2023-07-24T01:58:48Z) - Invariant Causal Set Covering Machines [64.86459157191346]
Rule-based models, such as decision trees, appeal to practitioners due to their interpretable nature.
However, the learning algorithms that produce such models are often vulnerable to spurious associations and thus, they are not guaranteed to extract causally-relevant insights.
We propose Invariant Causal Set Covering Machines, an extension of the classical Set Covering Machine algorithm for conjunctions/disjunctions of binary-valued rules that provably avoids spurious associations.
arXiv Detail & Related papers (2023-06-07T20:52:01Z) - Sources of Uncertainty in Supervised Machine Learning -- A Statisticians' View [3.0932932099777024]
Supervised machine learning and predictive models have achieved an impressive standard today, enabling us to answer questions that were inconceivable a few years ago.<n> beyond pure prediction, the quantification of uncertainty is relevant and necessary as well.<n>This paper adopts a conceptual, basic science perspective and examines possible sources of uncertainty.
arXiv Detail & Related papers (2023-05-26T07:44:19Z) - Uncertainty-Aware Pedestrian Trajectory Prediction via Distributional Diffusion [26.715578412088327]
We present a model-agnostic uncertainty-aware pedestrian trajectory prediction framework.
Unlike previous studies, we translate the predictiveity to explicit distributions, allowing it to generate plausible future trajectories.
Our framework is compatible with different neural net architectures.
arXiv Detail & Related papers (2023-03-15T04:58:43Z) - Certifying Fairness of Probabilistic Circuits [33.1089249944851]
We propose an algorithm to search for discrimination patterns in a general class of probabilistic models, namely probabilistic circuits.
We also introduce new classes of patterns such as minimal, maximal, and optimal patterns that can effectively summarize exponentially many discrimination patterns.
arXiv Detail & Related papers (2022-12-05T18:36:45Z) - Uncertain Evidence in Probabilistic Models and Stochastic Simulators [80.40110074847527]
We consider the problem of performing Bayesian inference in probabilistic models where observations are accompanied by uncertainty, referred to as uncertain evidence'
We explore how to interpret uncertain evidence, and by extension the importance of proper interpretation as it pertains to inference about latent variables.
We devise concrete guidelines on how to account for uncertain evidence and we provide new insights, particularly regarding consistency.
arXiv Detail & Related papers (2022-10-21T20:32:59Z) - Epistemic Deep Learning [6.144873990390373]
We introduce a concept called epistemic deep learning based on the random-set interpretation of belief functions.
We propose a novel random-set convolutional neural network for classification that produces scores for sets of classes by learning set-valued ground truth representations.
arXiv Detail & Related papers (2022-06-15T15:39:52Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
A new approach with uncertainty-aware regression-based neural networks (NNs) shows promise over traditional deterministic methods and typical Bayesian NNs.
We detail the theoretical shortcomings and analyze the performance on synthetic and real-world data sets, showing that Deep Evidential Regression is a quantification rather than an exact uncertainty.
arXiv Detail & Related papers (2022-05-20T10:10:32Z) - Robust uncertainty estimates with out-of-distribution pseudo-inputs
training [0.0]
We propose to explicitly train the uncertainty predictor where we are not given data to make it reliable.
As one cannot train without data, we provide mechanisms for generating pseudo-inputs in informative low-density regions of the input space.
With a holistic evaluation, we demonstrate that this yields robust and interpretable predictions of uncertainty while retaining state-of-the-art performance on diverse tasks.
arXiv Detail & Related papers (2022-01-15T17:15:07Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Aleatoric uncertainty for Errors-in-Variables models in deep regression [0.48733623015338234]
We show how the concept of Errors-in-Variables can be used in Bayesian deep regression.
We discuss the approach along various simulated and real examples.
arXiv Detail & Related papers (2021-05-19T12:37:02Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z) - When Does Uncertainty Matter?: Understanding the Impact of Predictive
Uncertainty in ML Assisted Decision Making [68.19284302320146]
We carry out user studies to assess how people with differing levels of expertise respond to different types of predictive uncertainty.
We found that showing posterior predictive distributions led to smaller disagreements with the ML model's predictions.
This suggests that posterior predictive distributions can potentially serve as useful decision aids which should be used with caution and take into account the type of distribution and the expertise of the human.
arXiv Detail & Related papers (2020-11-12T02:23:53Z) - Deep Learning based Uncertainty Decomposition for Real-time Control [9.067368638784355]
We propose a novel method for detecting the absence of training data using deep learning.
We show its advantages over existing approaches on synthetic and real-world datasets.
We further demonstrate the practicality of this uncertainty estimate in deploying online data-efficient control on a simulated quadcopter.
arXiv Detail & Related papers (2020-10-06T10:46:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.