Handling Non-Unitaries in Quantum Circuit Equivalence Checking
- URL: http://arxiv.org/abs/2106.01099v2
- Date: Tue, 30 Nov 2021 13:48:10 GMT
- Title: Handling Non-Unitaries in Quantum Circuit Equivalence Checking
- Authors: Lukas Burgholzer and Robert Wille
- Abstract summary: Quantum computers are reaching a level where interactions between classical and quantum computations can happen in real-time.
This marks the advent of a new, broader class of quantum circuits: dynamic quantum circuits.
They offer a broader range of available computing primitives that lead to new challenges for design tasks such as simulation, compilation, and verification.
- Score: 4.265279817927261
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computers are reaching a level where interactions between classical
and quantum computations can happen in real-time. This marks the advent of a
new, broader class of quantum circuits: dynamic quantum circuits. They offer a
broader range of available computing primitives that lead to new challenges for
design tasks such as simulation, compilation, and verification. Due to the
non-unitary nature of dynamic circuit primitives, most existing techniques and
tools for these tasks are no longer applicable in an out-of-the-box fashion. In
this work, we discuss the resulting consequences for quantum circuit
verification, specifically equivalence checking, and propose two different
schemes that eventually allow to treat the involved circuits as if they did not
contain non-unitaries at all. As a result, we demonstrate methodically, as well
as, experimentally that existing techniques for verifying the equivalence of
quantum circuits can be kept applicable for this broader class of circuits.
Related papers
- Dynamical simulations of many-body quantum chaos on a quantum computer [3.731709137507907]
We study a class of maximally chaotic circuits known as dual unitary circuits.
We show that a superconducting quantum processor with 91 qubits is able to accurately simulate these correlators.
We then probe dynamics beyond exact verification, by perturbing the circuits away from the dual unitary point.
arXiv Detail & Related papers (2024-11-01T17:57:13Z) - Equivalence Checking of Quantum Circuits via Intermediary Matrix Product Operator [4.306566710489809]
Equivalence checking plays a vital role in identifying errors that may arise during compilation and optimization of quantum circuits.
We introduce a novel method based on Matrix Product Operators (MPOs) for determining the equivalence of quantum circuits.
arXiv Detail & Related papers (2024-10-14T18:00:00Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Equivalence Checking of Dynamic Quantum Circuits [7.835264621634824]
State-of-the-art quantum devices still contain only a very limited number of qubits.
One possible way to execute more realistic algorithms in near-term quantum devices is to employ dynamic quantum circuits.
This technique can help to significantly reduce the resources required to achieve a given accuracy of a quantum algorithm.
arXiv Detail & Related papers (2021-06-03T08:03:22Z) - Exploiting dynamic quantum circuits in a quantum algorithm with
superconducting qubits [0.207811670193148]
We build dynamic quantum circuits on a superconducting-based quantum system.
We exploit one of the most fundamental quantum algorithms, quantum phase estimation, in its adaptive version.
We demonstrate that the version of real-time quantum computing with dynamic circuits can offer a substantial and tangible advantage.
arXiv Detail & Related papers (2021-02-02T18:51:23Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z) - Advanced Equivalence Checking for Quantum Circuits [4.265279817927261]
We propose an advanced methodology for equivalence checking of quantum circuits.
We show that, by exploiting the reversibility of quantum circuits, complexity can be kept feasible.
In contrast to the classical realm, simulation is very powerful in verifying quantum circuits.
arXiv Detail & Related papers (2020-04-17T18:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.