RH: An Architecture for Redesigning Quantum Circuits on Quantum Hardware Devices
- URL: http://arxiv.org/abs/2412.20893v3
- Date: Fri, 16 May 2025 07:58:53 GMT
- Title: RH: An Architecture for Redesigning Quantum Circuits on Quantum Hardware Devices
- Authors: Runhong He, Ji Guan, Xin Hong, Guolong Cui, Shengbin Wang, Shenggang Ying,
- Abstract summary: We present an architecture that enables the redesign of large-scale quantum circuits on quantum hardware.<n>By prepending a random quantum circuit module to the standard EQ-GAN framework, we extend its capability from quantum state learning to unitary transformation learning.
- Score: 6.959884576408311
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper we present an architecture that enables the redesign of large-scale quantum circuits on quantum hardware based on the entangling quantum generative adversarial network (EQ-GAN). Specifically, by prepending a random quantum circuit module to the standard EQ-GAN framework, we extend its capability from quantum state learning to unitary transformation learning. The completeness of this architecture is theoretically proved. Moreover, an efficient local random circuit is proposed, which significantly enhances the practicality of our architecture. For concreteness, we apply this architecture to three crucial applications in circuit optimization, including the equivalence checking of (non-) parameterized circuits, as well as the variational reconstruction of quantum circuits. The feasibility of our approach is demonstrated by excellent results in both classical and noisy intermediate-scale quantum (NISQ) hardware implementations. We believe our work will facilitate the implementation and validation of the advantages of quantum algorithms.
Related papers
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
Noise remains a major obstacle to achieving reliable quantum algorithms.<n>We present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers.
arXiv Detail & Related papers (2025-05-24T02:51:34Z) - Differentiable Quantum Architecture Search in Quantum-Enhanced Neural Network Parameter Generation [4.358861563008207]
Quantum neural networks (QNNs) have shown promise both empirically and theoretically.<n> Hardware imperfections and limited access to quantum devices pose practical challenges.<n>We propose an automated solution using differentiable optimization.
arXiv Detail & Related papers (2025-05-13T19:01:08Z) - Differentiable Quantum Architecture Search in Asynchronous Quantum Reinforcement Learning [3.6881738506505988]
We propose differentiable quantum architecture search (DiffQAS) to enable trainable circuit parameters and structure weights.
We show that our proposed DiffQAS-QRL approach achieves performance comparable to manually-crafted circuit architectures.
arXiv Detail & Related papers (2024-07-25T17:11:00Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Distributed quantum architecture search [0.0]
Variational quantum algorithms, inspired by neural networks, have become a novel approach in quantum computing.
Quantum architecture search tackles this by adjusting circuit structures along with gate parameters to automatically discover high-performance circuit structures.
We propose an end-to-end distributed quantum architecture search framework, where we aim to automatically design distributed quantum circuit structures for interconnected quantum processing units with specific qubit connectivity.
arXiv Detail & Related papers (2024-03-10T13:28:56Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - KetGPT -- Dataset Augmentation of Quantum Circuits using Transformers [1.236829197968612]
Quantum algorithms, represented as quantum circuits, can be used as benchmarks for assessing the performance of quantum systems.
Random circuits are, however, not representative benchmarks as they lack the inherent properties of real quantum algorithms.
This research aims to enhance the existing quantum circuit datasets by generating what we refer to as realistic-looking' circuits.
arXiv Detail & Related papers (2024-02-20T20:02:21Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Symmetry-Based Quantum Circuit Mapping [2.51705778594846]
We introduce a quantum circuit remapping algorithm that leverages the intrinsic symmetries in quantum processors.
This algorithm identifies all topologically equivalent circuit mappings by constraining the search space using symmetries and accelerates the scoring of each mapping using vector computation.
arXiv Detail & Related papers (2023-10-27T10:04:34Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Handling Non-Unitaries in Quantum Circuit Equivalence Checking [4.265279817927261]
Quantum computers are reaching a level where interactions between classical and quantum computations can happen in real-time.
This marks the advent of a new, broader class of quantum circuits: dynamic quantum circuits.
They offer a broader range of available computing primitives that lead to new challenges for design tasks such as simulation, compilation, and verification.
arXiv Detail & Related papers (2021-06-02T12:04:56Z) - Quantum Architecture Search via Deep Reinforcement Learning [0.0]
It is non-trivial to design a quantum gate sequence for generating a particular quantum state with as fewer gates as possible.
We propose a quantum architecture search framework with the power of deep reinforcement learning (DRL) to address this challenge.
We demonstrate a successful generation of quantum gate sequences for multi-qubit GHZ states without encoding any knowledge of quantum physics in the agent.
arXiv Detail & Related papers (2021-04-15T18:53:26Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Differentiable Quantum Architecture Search [15.045985536395479]
We propose a general framework of differentiable quantum architecture search (DQAS)
DQAS enables automated designs of quantum circuits in an end-to-end differentiable fashion.
arXiv Detail & Related papers (2020-10-16T18:00:03Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.