Entangling gates from cabling of knots
- URL: http://arxiv.org/abs/2412.20931v2
- Date: Fri, 07 Feb 2025 17:37:44 GMT
- Title: Entangling gates from cabling of knots
- Authors: Sergey Mironov, Andrey Morozov,
- Abstract summary: We discuss how to construct an efficient realization of a two qubit gate in topological quantum computer.
We present some examples of these operations for different parameters of the theory.
- Score: 1.450261153230204
- License:
- Abstract: While there is a general consensus about the structure of one qubit operations in topological quantum computer, two qubits are as usual a more difficult and complex story of different attempts with varying approaches, problems and effectiveness. In this paper we discuss how to construct an efficient realization of a two qubit gate in topological quantum computer, by using principle of cabling from the knot theory. This allows to construct a braiding of cables dependent on the parameters of the theory where there is a low probability of moving out of computational space (high fidelity of operation) while there is a non-trivial entangling two-qubit operation. We also present some examples of these operations for different parameters of the theory.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Experimental topological quantum computing with electric circuits [5.093683847211242]
We report the first experimental realization of topological quantum computation with electric circuits.
Based on our proposed new scheme with circuits, Majorana-like edge states are observed experimentally.
We demonstrate the feasibility of topological quantum computing through a set of one- and two-qubit unitary operations.
arXiv Detail & Related papers (2023-09-09T23:25:46Z) - Experimental Realization of Two Qutrits Gate with Tunable Coupling in
Superconducting Circuits [11.881366909450376]
Gate-based quantum computation has been extensively investigated using quantum circuits based on qubits.
One of the essential elements for qutrit-based quantum computation, two-qutrit quantum gate, remains a major challenge.
We propose and demonstrate a highly efficient and scalable two-qutrit quantum gate in superconducting quantum circuits.
arXiv Detail & Related papers (2022-06-22T16:33:58Z) - Effective non-local parity-dependent couplings in qubit chains [0.0]
We harness the simultaneous coupling of qubits on a chain and engineer a set of non-local parity-dependent quantum operations.
The resulting effective long-range couplings directly implement a parametrizable Trotter-step for Jordan-Wigner fermions.
We present numerical simulations of the gate operation in a superconducting quantum circuit architecture.
arXiv Detail & Related papers (2022-03-14T17:33:40Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Visualizing Kraus operators for dephasing noise during application of
the $\sqrt{\mathrm{\mathrm{SWAP}}}$ quantum gate [0.0]
We derive optimized Kraus operators for a quantum gate in the presence of noise.
We show how to visualize the time evolution of each Kraus operator as a curve in a three-dimensional Euclidean space.
arXiv Detail & Related papers (2021-03-18T17:02:08Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Parallel entangling gate operations and two-way quantum communication in
spin chains [0.0]
We propose a protocol to parallelize the implementation of two-qubit entangling gates.
The proposed protocol can serve for realizing two-way quantum communication.
arXiv Detail & Related papers (2020-08-28T17:50:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.