Efficient Estimation and Sequential Optimization of Cost Functions in Variational Quantum Algorithms
- URL: http://arxiv.org/abs/2412.20972v1
- Date: Mon, 30 Dec 2024 14:24:53 GMT
- Title: Efficient Estimation and Sequential Optimization of Cost Functions in Variational Quantum Algorithms
- Authors: Muhammad Umer, Eleftherios Mastorakis, Dimitris G. Angelakis,
- Abstract summary: We introduce a novel optimization methodology that conceptualizes the parameterized quantum circuit as a weighted sum of distinct unitary operators.
This representation facilitates the efficient evaluation of nonlocal characteristics of cost functions, as well as their arbitrary derivatives.
Our findings reveal substantial enhancements in convergence speed and accuracy relative to traditional optimization methods.
- Score: 1.4981317129908267
- License:
- Abstract: Classical optimization is a cornerstone of the success of variational quantum algorithms, which often require determining the derivatives of the cost function relative to variational parameters. The computation of the cost function and its derivatives, coupled with their effective utilization, facilitates faster convergence by enabling smooth navigation through complex landscapes, ensuring the algorithm's success in addressing challenging variational problems. In this work, we introduce a novel optimization methodology that conceptualizes the parameterized quantum circuit as a weighted sum of distinct unitary operators, enabling the cost function to be expressed as a sum of multiple terms. This representation facilitates the efficient evaluation of nonlocal characteristics of cost functions, as well as their arbitrary derivatives. The optimization protocol then utilizes the nonlocal information on the cost function to facilitate a more efficient navigation process, ultimately enhancing the performance in the pursuit of optimal solutions. We utilize this methodology for two distinct cost functions. The first is the squared residual of the variational state relative to a target state, which is subsequently employed to examine the nonlinear dynamics of fluid configurations governed by the one-dimensional Burgers' equation. The second cost function is the expectation value of an observable, which is later utilized to approximate the ground state of the nonlinear Schr\"{o}dinger equation. Our findings reveal substantial enhancements in convergence speed and accuracy relative to traditional optimization methods, even within complex, high-dimensional landscapes. Our work contributes to the advancement of optimization strategies for variational quantum algorithms, establishing a robust framework for addressing a range of computationally intensive problems across numerous applications.
Related papers
- A Novel Unified Parametric Assumption for Nonconvex Optimization [53.943470475510196]
Non optimization is central to machine learning, but the general framework non convexity enables weak convergence guarantees too pessimistic compared to the other hand.
We introduce a novel unified assumption in non convex algorithms.
arXiv Detail & Related papers (2025-02-17T21:25:31Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Variational quantum algorithm for enhanced continuous variable optical
phase sensing [0.0]
Variational quantum algorithms (VQAs) are hybrid quantum-classical approaches used for tackling a wide range of problems on noisy quantum devices.
We implement a variational algorithm designed for optimized parameter estimation on a continuous variable platform based on squeezed light.
arXiv Detail & Related papers (2023-12-21T14:11:05Z) - Landscape-Sketch-Step: An AI/ML-Based Metaheuristic for Surrogate
Optimization Problems [0.0]
We introduce a newimats for global optimization in scenarios where extensive evaluations of the cost function are expensive, inaccessible, or even prohibitive.
The method, which we call Landscape-Sketch-and-Step (LSS), combines Machine Learning, Replica Optimization, and Reinforcement Learning techniques.
arXiv Detail & Related papers (2023-09-14T01:53:45Z) - Quantum approximate optimization via learning-based adaptive
optimization [5.399532145408153]
Quantum approximate optimization algorithm (QAOA) is designed to solve objective optimization problems.
Our results demonstrate that the algorithm greatly outperforms conventional approximations in terms of speed, accuracy, efficiency and stability.
This work helps to unlock the full power of QAOA and paves the way toward achieving quantum advantage in practical classical tasks.
arXiv Detail & Related papers (2023-03-27T02:14:56Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
We show that an increasing large momentum parameter for the first-order moment is sufficient for adaptive scaling.
We also give insights for increasing the momentum in a stagewise manner in accordance with stagewise decreasing step size.
arXiv Detail & Related papers (2021-04-30T08:50:24Z) - Quantum variational optimization: The role of entanglement and problem
hardness [0.0]
We study the role of entanglement, the structure of the variational quantum circuit, and the structure of the optimization problem.
Our numerical results indicate an advantage in adapting the distribution of entangling gates to the problem's topology.
We find evidence that applying conditional value at risk type cost functions improves the optimization, increasing the probability of overlap with the optimal solutions.
arXiv Detail & Related papers (2021-03-26T14:06:54Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Using models to improve optimizers for variational quantum algorithms [1.7475326826331605]
Variational quantum algorithms are a leading candidate for early applications on noisy intermediate-scale quantum computers.
These algorithms depend on a classical optimization outer-loop that minimizes some function of a parameterized quantum circuit.
We introduce two optimization methods and numerically compare their performance with common methods in use today.
arXiv Detail & Related papers (2020-05-22T05:23:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.