Landscape-Sketch-Step: An AI/ML-Based Metaheuristic for Surrogate
Optimization Problems
- URL: http://arxiv.org/abs/2309.07936v3
- Date: Wed, 4 Oct 2023 23:03:48 GMT
- Title: Landscape-Sketch-Step: An AI/ML-Based Metaheuristic for Surrogate
Optimization Problems
- Authors: Rafael Monteiro and Kartik Sau
- Abstract summary: We introduce a newimats for global optimization in scenarios where extensive evaluations of the cost function are expensive, inaccessible, or even prohibitive.
The method, which we call Landscape-Sketch-and-Step (LSS), combines Machine Learning, Replica Optimization, and Reinforcement Learning techniques.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a new heuristics for global optimization in
scenarios where extensive evaluations of the cost function are expensive,
inaccessible, or even prohibitive. The method, which we call
Landscape-Sketch-and-Step (LSS), combines Machine Learning, Stochastic
Optimization, and Reinforcement Learning techniques, relying on historical
information from previously sampled points to make judicious choices of
parameter values where the cost function should be evaluated at. Unlike
optimization by Replica Exchange Monte Carlo methods, the number of evaluations
of the cost function required in this approach is comparable to that used by
Simulated Annealing, quality that is especially important in contexts like
high-throughput computing or high-performance computing tasks, where
evaluations are either computationally expensive or take a long time to be
performed. The method also differs from standard Surrogate Optimization
techniques, for it does not construct a surrogate model that aims at
approximating or reconstructing the objective function. We illustrate our
method by applying it to low dimensional optimization problems (dimensions 1,
2, 4, and 8) that mimick known difficulties of minimization on rugged energy
landscapes often seen in Condensed Matter Physics, where cost functions are
rugged and plagued with local minima. When compared to classical Simulated
Annealing, the LSS shows an effective acceleration of the optimization process.
Related papers
- Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Contextual Stochastic Bilevel Optimization [50.36775806399861]
We introduce contextual bilevel optimization (CSBO) -- a bilevel optimization framework with the lower-level problem minimizing an expectation on some contextual information and the upper-level variable.
It is important for applications such as meta-learning, personalized learning, end-to-end learning, and Wasserstein distributionally robustly optimization with side information (WDRO-SI)
arXiv Detail & Related papers (2023-10-27T23:24:37Z) - DADO -- Low-Cost Query Strategies for Deep Active Design Optimization [1.6298921134113031]
We present two selection strategies for self-optimization to reduce the computational cost in multi-objective design optimization problems.
We evaluate our strategies on a large dataset from the domain of fluid dynamics and introduce two new evaluation metrics to determine the model's performance.
arXiv Detail & Related papers (2023-07-10T13:01:27Z) - Maximum Optimality Margin: A Unified Approach for Contextual Linear
Programming and Inverse Linear Programming [10.06803520598035]
We develop a new approach to the problem called maximum optimality margin which the machine learning loss function by the optimality condition of the downstream optimization.
arXiv Detail & Related papers (2023-01-26T17:53:38Z) - A Particle-based Sparse Gaussian Process Optimizer [5.672919245950197]
We present a new swarm-swarm-based framework utilizing the underlying dynamical process of descent.
The biggest advantage of this approach is greater exploration around the current state before deciding descent descent.
arXiv Detail & Related papers (2022-11-26T09:06:15Z) - Multi-Step Budgeted Bayesian Optimization with Unknown Evaluation Costs [28.254408148839644]
We propose a non-myopic acquisition function that generalizes classical expected improvement to the setting of heterogeneous evaluation costs.
Our acquisition function outperforms existing methods in a variety of synthetic and real problems.
arXiv Detail & Related papers (2021-11-12T02:18:26Z) - Implicit Rate-Constrained Optimization of Non-decomposable Objectives [37.43791617018009]
We consider a family of constrained optimization problems arising in machine learning.
Our key idea is to formulate a rate-constrained optimization that expresses the threshold parameter as a function of the model parameters.
We show how the resulting optimization problem can be solved using standard gradient based methods.
arXiv Detail & Related papers (2021-07-23T00:04:39Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.