KARPA: A Training-free Method of Adapting Knowledge Graph as References for Large Language Model's Reasoning Path Aggregation
- URL: http://arxiv.org/abs/2412.20995v1
- Date: Mon, 30 Dec 2024 14:58:46 GMT
- Title: KARPA: A Training-free Method of Adapting Knowledge Graph as References for Large Language Model's Reasoning Path Aggregation
- Authors: Siyuan Fang, Kaijing Ma, Tianyu Zheng, Xinrun Du, Ningxuan Lu, Ge Zhang, Qingkun Tang,
- Abstract summary: Large language models (LLMs) demonstrate exceptional performance across a variety of tasks, yet they are often affected by hallucinations and the timeliness of knowledge.
We propose Knowledge graph Assisted Reasoning Path Aggregation (KARPA), a novel framework that harnesses the global planning abilities of LLMs for efficient and accurate KG reasoning.
KARPA achieves state-of-the-art performance in KGQA tasks, delivering both high efficiency and accuracy.
- Score: 2.698553758512034
- License:
- Abstract: Large language models (LLMs) demonstrate exceptional performance across a variety of tasks, yet they are often affected by hallucinations and the timeliness of knowledge. Leveraging knowledge graphs (KGs) as external knowledge sources has emerged as a viable solution, but existing methods for LLM-based knowledge graph question answering (KGQA) are often limited by step-by-step decision-making on KGs, restricting the global planning and reasoning capabilities of LLMs, or they require fine-tuning or pre-training on specific KGs. To address these challenges, we propose Knowledge graph Assisted Reasoning Path Aggregation (KARPA), a novel framework that harnesses the global planning abilities of LLMs for efficient and accurate KG reasoning. KARPA operates in three steps: pre-planning relation paths using the LLM's global planning capabilities, matching semantically relevant paths via an embedding model, and reasoning over these paths to generate answers. Unlike existing KGQA methods, KARPA avoids stepwise traversal, requires no additional training, and is adaptable to various LLM architectures. Extensive experimental results show that KARPA achieves state-of-the-art performance in KGQA tasks, delivering both high efficiency and accuracy. Our code will be available on Github.
Related papers
- KG-CF: Knowledge Graph Completion with Context Filtering under the Guidance of Large Language Models [55.39134076436266]
KG-CF is a framework tailored for ranking-based knowledge graph completion tasks.
KG-CF leverages LLMs' reasoning abilities to filter out irrelevant contexts, achieving superior results on real-world datasets.
arXiv Detail & Related papers (2025-01-06T01:52:15Z) - KaLM: Knowledge-aligned Autoregressive Language Modeling via Dual-view Knowledge Graph Contrastive Learning [74.21524111840652]
This paper proposes textbfKaLM, a textitKnowledge-aligned Language Modeling approach.
It fine-tunes autoregressive large language models to align with KG knowledge via the joint objective of explicit knowledge alignment and implicit knowledge alignment.
Notably, our method achieves a significant performance boost in evaluations of knowledge-driven tasks.
arXiv Detail & Related papers (2024-12-06T11:08:24Z) - Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains [66.55612528039894]
Knowledge Graphs (KGs) can serve as reliable knowledge sources for question answering (QA)
We present DoG (Decoding on Graphs), a novel framework that facilitates a deep synergy between LLMs and KGs.
Experiments across various KGQA tasks with different background KGs demonstrate that DoG achieves superior and robust performance.
arXiv Detail & Related papers (2024-10-24T04:01:40Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - Knowledge Graph-Enhanced Large Language Models via Path Selection [58.228392005755026]
Large Language Models (LLMs) have shown unprecedented performance in various real-world applications.
LLMs are known to generate factually inaccurate outputs, a.k.a. the hallucination problem.
We propose a principled framework KELP with three stages to handle the above problems.
arXiv Detail & Related papers (2024-06-19T21:45:20Z) - EffiQA: Efficient Question-Answering with Strategic Multi-Model Collaboration on Knowledge Graphs [11.323661062578799]
EffiQA consists of three stages: global planning, efficient KG exploration, and self-reflection.
Empirical evidence on multiple KBQA benchmarks shows EffiQA's effectiveness.
We hope the proposed new framework will pave the way for efficient, knowledge-intensive querying.
arXiv Detail & Related papers (2024-06-03T11:56:07Z) - Explore then Determine: A GNN-LLM Synergy Framework for Reasoning over Knowledge Graph [38.31983923708175]
This paper focuses on the Question Answering over Knowledge Graph (KGQA) task.
It proposes an Explore-then-Determine (EtD) framework that synergizes Large Language Models with graph neural networks (GNNs) for reasoning over KGs.
EtD achieves state-of-the-art performance and generates faithful reasoning results.
arXiv Detail & Related papers (2024-06-03T09:38:28Z) - FiDeLiS: Faithful Reasoning in Large Language Model for Knowledge Graph Question Answering [46.41364317172677]
Large language models (LLMs) are often challenged by generating erroneous or hallucinated responses.
We propose a unified framework, FiDeLiS, designed to improve the factuality of LLM responses by anchoring answers to verifiable reasoning steps retrieved from a KG.
arXiv Detail & Related papers (2024-05-22T17:56:53Z) - Empowering Small-Scale Knowledge Graphs: A Strategy of Leveraging General-Purpose Knowledge Graphs for Enriched Embeddings [3.7759315989669058]
We introduce a framework for enriching embeddings of small-scale domain-specific Knowledge Graphs with well-established general-purpose KGs.
Experimental evaluations demonstrate a notable enhancement, with up to a 44% increase observed in the Hits@10 metric.
This relatively unexplored research direction can catalyze more frequent incorporation of KGs in knowledge-intensive tasks.
arXiv Detail & Related papers (2024-05-17T12:46:23Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
We propose a training-free method called Generate-on-Graph (GoG) to generate new factual triples while exploring Knowledge Graphs (KGs)
GoG performs reasoning through a Thinking-Searching-Generating framework, which treats LLM as both Agent and KG in IKGQA.
arXiv Detail & Related papers (2024-04-23T04:47:22Z) - KnowledgeNavigator: Leveraging Large Language Models for Enhanced
Reasoning over Knowledge Graph [11.808990571175269]
Large language model (LLM) has achieved outstanding performance on various downstream tasks with its powerful natural language understanding and zero-shot capability, but LLM still suffers from knowledge limitation.
We propose a novel framework KnowledgeNavigator to address these challenges by efficiently and accurately retrieving external knowledge from knowledge graph.
We evaluate KnowledgeNavigator on multiple public KGQA benchmarks, the experiments show the framework has great effectiveness and generalization.
arXiv Detail & Related papers (2023-12-26T04:22:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.