EffiQA: Efficient Question-Answering with Strategic Multi-Model Collaboration on Knowledge Graphs
- URL: http://arxiv.org/abs/2406.01238v3
- Date: Tue, 24 Sep 2024 13:53:59 GMT
- Title: EffiQA: Efficient Question-Answering with Strategic Multi-Model Collaboration on Knowledge Graphs
- Authors: Zixuan Dong, Baoyun Peng, Yufei Wang, Jia Fu, Xiaodong Wang, Yongxue Shan, Xin Zhou,
- Abstract summary: EffiQA consists of three stages: global planning, efficient KG exploration, and self-reflection.
Empirical evidence on multiple KBQA benchmarks shows EffiQA's effectiveness.
We hope the proposed new framework will pave the way for efficient, knowledge-intensive querying.
- Score: 11.323661062578799
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While large language models (LLMs) have shown remarkable capabilities in natural language processing, they struggle with complex, multi-step reasoning tasks involving knowledge graphs (KGs). Existing approaches that integrate LLMs and KGs either underutilize the reasoning abilities of LLMs or suffer from prohibitive computational costs due to tight coupling. To address these limitations, we propose a novel collaborative framework named EffiQA that can strike a balance between performance and efficiency via an iterative paradigm. EffiQA consists of three stages: global planning, efficient KG exploration, and self-reflection. Specifically, EffiQA leverages the commonsense capability of LLMs to explore potential reasoning pathways through global planning. Then, it offloads semantic pruning to a small plug-in model for efficient KG exploration. Finally, the exploration results are fed to LLMs for self-reflection to further improve the global planning and efficient KG exploration. Empirical evidence on multiple KBQA benchmarks shows EffiQA's effectiveness, achieving an optimal balance between reasoning accuracy and computational costs. We hope the proposed new framework will pave the way for efficient, knowledge-intensive querying by redefining the integration of LLMs and KGs, fostering future research on knowledge-based question answering.
Related papers
- Simple is Effective: The Roles of Graphs and Large Language Models in Knowledge-Graph-Based Retrieval-Augmented Generation [9.844598565914055]
Large Language Models (LLMs) demonstrate strong reasoning abilities but face limitations such as hallucinations and outdated knowledge.
We introduce SubgraphRAG, extending the Knowledge Graph (KG)-based Retrieval-Augmented Generation (RAG) framework that retrieves subgraphs.
Our approach innovatively integrates a lightweight multilayer perceptron with a parallel triple-scoring mechanism for efficient and flexible subgraph retrieval.
arXiv Detail & Related papers (2024-10-28T04:39:32Z) - GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning framework that integrates the parametric and non-parametric memories.
Our method facilitates a more logical and step-wise reasoning approach akin to experts' problem-solving, rather than gold answer retrieval.
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - Can Knowledge Graphs Make Large Language Models More Trustworthy? An Empirical Study over Open-ended Question Answering [35.2451096137883]
We introduce OKGQA, a new benchmark specifically designed to assess Large Language Models (LLMs) enhanced with Knowledge Graphs (KGs)
OKGQA is designed to closely reflect the complexities of practical applications using questions from different types, and incorporates specific metrics to measure both the reduction in hallucinations and the enhancement in reasoning capabilities.
We also propose OKGQA-P to assess model performance when the semantics and structure of KGs are deliberately perturbed and contaminated.
arXiv Detail & Related papers (2024-10-10T16:29:21Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Combining Knowledge Graphs and Large Language Models [4.991122366385628]
Large language models (LLMs) show astonishing results in language understanding and generation.
They still show some disadvantages, such as hallucinations and lack of domain-specific knowledge.
These issues can be effectively mitigated by incorporating knowledge graphs (KGs)
This work collected 28 papers outlining methods for KG-powered LLMs, LLM-based KGs, and LLM-KG hybrid approaches.
arXiv Detail & Related papers (2024-07-09T05:42:53Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning
over Knowledge Graph [134.8631016845467]
We propose an autonomous LLM-based agent framework, called KG-Agent.
In KG-Agent, we integrate the LLM, multifunctional toolbox, KG-based executor, and knowledge memory.
To guarantee the effectiveness, we leverage program language to formulate the multi-hop reasoning process over the KG.
arXiv Detail & Related papers (2024-02-17T02:07:49Z) - An Enhanced Prompt-Based LLM Reasoning Scheme via Knowledge Graph-Integrated Collaboration [7.3636034708923255]
This study proposes a collaborative training-free reasoning scheme involving tight cooperation between Knowledge Graph (KG) and Large Language Models (LLMs)
Through such a cooperative approach, our scheme achieves more reliable knowledge-based reasoning and facilitates the tracing of the reasoning results.
arXiv Detail & Related papers (2024-02-07T15:56:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.