Verbosity-Aware Rationale Reduction: Effective Reduction of Redundant Rationale via Principled Criteria
- URL: http://arxiv.org/abs/2412.21006v3
- Date: Wed, 04 Jun 2025 01:28:39 GMT
- Title: Verbosity-Aware Rationale Reduction: Effective Reduction of Redundant Rationale via Principled Criteria
- Authors: Joonwon Jang, Jaehee Kim, Wonbin Kweon, Seonghyeon Lee, Hwanjo Yu,
- Abstract summary: Large Language Models (LLMs) rely on generating extensive intermediate reasoning units (e.g., tokens, sentences) to enhance final answer quality.<n>Previous methods adopting token-level reduction without clear criteria result in poor performance compared to models trained with complete rationale.<n>We propose a novel sentence-level rationale reduction framework leveraging likelihood-based criteria, verbosity, to identify and remove redundant reasoning sentences.
- Score: 18.612187958340407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) rely on generating extensive intermediate reasoning units (e.g., tokens, sentences) to enhance final answer quality across a wide range of complex tasks. While this approach has proven effective, it inevitably increases substantial inference costs. Previous methods adopting token-level reduction without clear criteria result in poor performance compared to models trained with complete rationale. To address this challenge, we propose a novel sentence-level rationale reduction framework leveraging likelihood-based criteria, verbosity, to identify and remove redundant reasoning sentences. Unlike previous approaches, our method leverages verbosity to selectively remove redundant reasoning sentences while preserving reasoning capabilities. Our experimental results across various reasoning tasks demonstrate that our method improves performance by an average of 7.71% while reducing token generation by 19.87% compared to model trained with complete reasoning paths.
Related papers
- ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation [53.149817480019834]
Recent advancements in large reasoning models (LRMs) have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT)<n>We propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting the textual hint during the token generation of the reasoning process.<n>Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning processes while maintaining performance well.
arXiv Detail & Related papers (2025-06-23T16:20:44Z) - Think Clearly: Improving Reasoning via Redundant Token Pruning [57.01254508252785]
We show that deliberately removing redundancy in the reasoning process significantly improves performance.<n>We demonstrate that our method significantly improves overall accuracy across reasoning-intensive benchmarks without any training.
arXiv Detail & Related papers (2025-06-17T06:04:01Z) - Efficient Post-Training Refinement of Latent Reasoning in Large Language Models [22.878147805601706]
Chain-of-Thought prompting suffers from sufficient token overhead and a fixed reasoning trajectory, preventing step-wise refinement.<n>Recent advances in latent reasoning address these limitations by refining internal reasoning processes directly in the model's latent space.<n>We propose a lightweight post-training framework that refines latent reasoning trajectories using two novel strategies.
arXiv Detail & Related papers (2025-06-10T08:17:16Z) - PixelThink: Towards Efficient Chain-of-Pixel Reasoning [70.32510083790069]
PixelThink is a simple yet effective scheme that integrates externally estimated task difficulty and internally measured model uncertainty.<n>It learns to compress reasoning length in accordance with scene complexity and predictive confidence.<n> Experimental results demonstrate that the proposed approach improves both reasoning efficiency and overall segmentation performance.
arXiv Detail & Related papers (2025-05-29T17:55:49Z) - Think or Not? Exploring Thinking Efficiency in Large Reasoning Models via an Information-Theoretic Lens [51.90059610606049]
This paper revisits the efficiency of such reasoning processes through an information-theoretic lens.<n>We propose two metrics, InfoBias and InfoGain, to quantify divergence from ideal reasoning paths and stepwise information contribution.<n>Motivated by these findings, we introduce an entropy-based Adaptive Think strategy that dynamically halts reasoning once confidence is sufficiently high.
arXiv Detail & Related papers (2025-05-23T13:38:56Z) - Are Retrials All You Need? Enhancing Large Language Model Reasoning Without Verbalized Feedback [2.2406151150434894]
We introduce the concept of retrials without feedback''
Unlike conventional iterative refinement methods, our method does not require explicit self-reflection or verbalized feedback.
Our findings indicate that simpler retrial-based approaches often outperform more sophisticated reasoning frameworks.
arXiv Detail & Related papers (2025-04-17T13:52:48Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.
Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z) - The First Few Tokens Are All You Need: An Efficient and Effective Unsupervised Prefix Fine-Tuning Method for Reasoning Models [69.798277882245]
We introduce Unsupervised Prefix Fine-Tuning (UPFT) to enhance large language models' reasoning efficiency.
UPFT removes the need for labeled data or exhaustive sampling.
Experiments show that UPFT matches the performance of supervised methods.
arXiv Detail & Related papers (2025-03-04T18:56:03Z) - Reward-Guided Speculative Decoding for Efficient LLM Reasoning [80.55186052123196]
We introduce Reward-Guided Speculative Decoding (RSD), a novel framework aimed at improving the efficiency of inference in large language models (LLMs)
RSD incorporates a controlled bias to prioritize high-reward outputs, in contrast to existing speculative decoding methods that enforce strict unbiasedness.
RSD delivers significant efficiency gains against decoding with the target model only, while achieving significant better accuracy than parallel decoding method on average.
arXiv Detail & Related papers (2025-01-31T17:19:57Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.
We present a unified probabilistic framework that formalizes LLM reasoning through a novel graphical model.
We introduce the Bootstrapping Reinforced Thinking Process (BRiTE) algorithm, which works in two steps.
arXiv Detail & Related papers (2025-01-31T02:39:07Z) - Think Beyond Size: Adaptive Prompting for More Effective Reasoning [0.0]
We introduce Adaptive Prompting, a dynamic and iterative framework designed to enhance reasoning by incorporating real-time adjustments to prompt structures and validation mechanisms.<n>Results demonstrate that Adaptive Prompting significantly improves performance on diverse reasoning benchmarks, including arithmetic reasoning (GSM8K, MultiArithm), logical reasoning and commonsense tasks.<n>Our approach enables smaller models to achieve competitive performance with larger counterparts, such as GPT-4, while maintaining computational efficiency.
arXiv Detail & Related papers (2024-10-10T17:14:36Z) - Rational Metareasoning for Large Language Models [5.5539136805232205]
Being prompted to engage in reasoning has emerged as a core technique for using large language models (LLMs)<n>This work introduces a novel approach based on computational models of metareasoning used in cognitive science.<n>We develop a reward function that incorporates the Value of Computation by penalizing unnecessary reasoning.
arXiv Detail & Related papers (2024-10-07T23:48:52Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
Current research enhances the reasoning performance of Large Language Models (LLMs) by sampling multiple reasoning chains and ensembling based on the answer frequency.
This approach fails in scenarios where the correct answers are in the minority.
We introduce a hierarchical reasoning aggregation framework AoR, which selects answers based on the evaluation of reasoning chains.
arXiv Detail & Related papers (2024-05-21T17:12:19Z) - Augmenting Unsupervised Reinforcement Learning with Self-Reference [63.68018737038331]
Humans possess the ability to draw on past experiences explicitly when learning new tasks.
We propose the Self-Reference (SR) approach, an add-on module explicitly designed to leverage historical information.
Our approach achieves state-of-the-art results in terms of Interquartile Mean (IQM) performance and Optimality Gap reduction on the Unsupervised Reinforcement Learning Benchmark.
arXiv Detail & Related papers (2023-11-16T09:07:34Z) - CREST: A Joint Framework for Rationalization and Counterfactual Text
Generation [5.606679908174783]
We introduce CREST (ContRastive Edits with Sparse raTionalization), a framework for selective rationalization and counterfactual text generation.
CREST generates valid counterfactuals that are more natural than those produced by previous methods.
New loss function that leverages CREST counterfactuals to regularize selective rationales improves both model robustness and rationale quality.
arXiv Detail & Related papers (2023-05-26T16:34:58Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
Large language models (LLMs) can achieve highly effective performance on various reasoning tasks by incorporating step-by-step chain-of-thought (CoT) prompting as demonstrations.
We introduce Iter-CoT (Iterative bootstrapping in Chain-of-Thoughts Prompting), an iterative bootstrapping approach for selecting exemplars and generating reasoning chains.
arXiv Detail & Related papers (2023-04-23T13:54:39Z) - REFINER: Reasoning Feedback on Intermediate Representations [47.36251998678097]
We introduce REFINER, a framework for finetuning language models to generate intermediate inferences.
REFINER works by interacting with a critic model that provides automated feedback on the reasoning.
Empirical evaluations show significant improvements over baseline LMs of comparable scale.
arXiv Detail & Related papers (2023-04-04T15:57:28Z) - Rationale-Augmented Ensembles in Language Models [53.45015291520658]
We reconsider rationale-augmented prompting for few-shot in-context learning.
We identify rationale sampling in the output space as the key component to robustly improve performance.
We demonstrate that rationale-augmented ensembles achieve more accurate and interpretable results than existing prompting approaches.
arXiv Detail & Related papers (2022-07-02T06:20:57Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
We propose falSe COrrelation REduction (SCORE) for offline RL, a practically effective and theoretically provable algorithm.
We empirically show that SCORE achieves the SoTA performance with 3.1x acceleration on various tasks in a standard benchmark (D4RL)
arXiv Detail & Related papers (2021-10-24T15:34:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.