GePBench: Evaluating Fundamental Geometric Perception for Multimodal Large Language Models
- URL: http://arxiv.org/abs/2412.21036v2
- Date: Sun, 16 Feb 2025 07:39:45 GMT
- Title: GePBench: Evaluating Fundamental Geometric Perception for Multimodal Large Language Models
- Authors: Shangyu Xing, Changhao Xiang, Yuteng Han, Yifan Yue, Zhen Wu, Xinyu Liu, Zhangtai Wu, Fei Zhao, Xinyu Dai,
- Abstract summary: We introduce GePBench, a novel benchmark designed to assess the geometric perception abilities of MLLMs.
Our evaluations reveal that current state-of-the-art MLLMs exhibit significant deficiencies in geometric perception tasks.
We show that models trained with GePBench data demonstrate substantial improvements on a wide range of benchmark tasks.
- Score: 34.647839550142834
- License:
- Abstract: Multimodal large language models (MLLMs) have made significant progress in integrating visual and linguistic understanding. Existing benchmarks typically focus on high-level semantic capabilities, such as scene understanding and visual reasoning, but often overlook a crucial, foundational ability: geometric perception. Geometric perception involves understanding geometric shapes, structures, and spatial relationships, which are essential for supporting higher-level semantic tasks. Despite its importance, this capability remains underexplored in current MLLM research. To address this gap, we introduce GePBench, a novel benchmark designed to assess the geometric perception abilities of MLLMs. Our extensive evaluations reveal that current state-of-the-art MLLMs exhibit significant deficiencies in geometric perception tasks. Furthermore, we show that models trained with GePBench data demonstrate substantial improvements on a wide range of benchmark tasks, highlighting the critical role of geometric perception in enabling advanced multimodal applications. Our code and datasets will be publicly available.
Related papers
- Do Large Language Models Truly Understand Geometric Structures? [15.915781154075615]
We introduce the GeomRel dataset to evaluate large language models' understanding of geometric structures.
We propose the Geometry Chain-of-Thought (GeoCoT) method, which enhances LLMs' ability to identify geometric relationships.
arXiv Detail & Related papers (2025-01-23T15:52:34Z) - Open Eyes, Then Reason: Fine-grained Visual Mathematical Understanding in MLLMs [62.875934732547435]
Current large language models (MLLMs) often underperform on mathematical problem-solving tasks that require fine-grained visual understanding.
In this paper, we evaluate the visual grounding capabilities of state-of-the-art MLLMs and reveal a significant negative correlation between visual grounding accuracy and problem-solving performance.
We propose a novel approach, SVE-Math, featuring a geometric-grounded vision encoder and a feature router that dynamically adjusts the contribution of hierarchical visual feature maps.
arXiv Detail & Related papers (2025-01-11T04:08:44Z) - Personalized Multimodal Large Language Models: A Survey [127.9521218125761]
Multimodal Large Language Models (MLLMs) have become increasingly important due to their state-of-the-art performance and ability to integrate multiple data modalities.
This paper presents a comprehensive survey on personalized multimodal large language models, focusing on their architecture, training methods, and applications.
arXiv Detail & Related papers (2024-12-03T03:59:03Z) - Navigate Complex Physical Worlds via Geometrically Constrained LLM [10.89488333922071]
The study introduces a set of geometric conventions and develops a workflow based on multi-layer graphs and multi-agent system frameworks.
The study employs a genetic algorithm, inspired by large-scale model knowledge, to solve geometric constraint problems.
arXiv Detail & Related papers (2024-10-23T03:14:07Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - Reasoning in Large Language Models: A Geometric Perspective [4.2909314120969855]
We explore the reasoning abilities of large language models (LLMs) through their geometrical understanding.
We establish a connection between the expressive power of LLMs and the density of their self-attention graphs.
arXiv Detail & Related papers (2024-07-02T21:39:53Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - GSR-BENCH: A Benchmark for Grounded Spatial Reasoning Evaluation via Multimodal LLMs [3.2688425993442696]
The ability to understand and reason about spatial relationships between objects in images is an important component of visual reasoning.
We extend the previously released What'sUp dataset and propose a novel comprehensive evaluation for spatial relationship understanding.
arXiv Detail & Related papers (2024-06-19T06:15:26Z) - Beyond Lines and Circles: Unveiling the Geometric Reasoning Gap in Large
Language Models [28.819559978685806]
Large Language Models (LLMs) demonstrate ever-increasing abilities in mathematical and algorithmic tasks, yet their geometric reasoning skills are underexplored.
We investigate LLMs' abilities in constructive geometric problem-solving one of the most fundamental steps in the development of human mathematical reasoning.
Our work reveals notable challenges that the state-of-the-art LLMs face in this domain despite many successes in similar areas.
arXiv Detail & Related papers (2024-02-06T10:37:21Z) - G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model [124.68242155098189]
Large language models (LLMs) have shown remarkable proficiency in human-level reasoning and generation capabilities.
G-LLaVA demonstrates exceptional performance in solving geometric problems, significantly outperforming GPT-4-V on the MathVista benchmark with only 7B parameters.
arXiv Detail & Related papers (2023-12-18T17:36:20Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.
MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.