論文の概要: Learning Epidemiological Dynamics via the Finite Expression Method
- arxiv url: http://arxiv.org/abs/2412.21049v1
- Date: Mon, 30 Dec 2024 16:08:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:03:50.731258
- Title: Learning Epidemiological Dynamics via the Finite Expression Method
- Title(参考訳): 有限表現法による疫学ダイナミクスの学習
- Authors: Jianda Du, Senwei Liang, Chunmei Wang,
- Abstract要約: 本稿では,疫学のダイナミックスに対する明示的な数学的表現を導出する記号的学習フレームワークであるFinite Expression Methodを紹介する。
FEXは疾患の拡散をモデル化し予測する上で高い精度を示し、また疫学変数間の明確な関係を明らかにする。
その結果、FEXは感染性疾患モデリングの強力なツールであり、解釈可能性と高い予測性能を組み合わせることで、公衆衛生における実践的応用を支援することが強調された。
- 参考スコア(独自算出の注目度): 2.262416218618684
- License:
- Abstract: Modeling and forecasting the spread of infectious diseases is essential for effective public health decision-making. Traditional epidemiological models rely on expert-defined frameworks to describe complex dynamics, while neural networks, despite their predictive power, often lack interpretability due to their ``black-box" nature. This paper introduces the Finite Expression Method, a symbolic learning framework that leverages reinforcement learning to derive explicit mathematical expressions for epidemiological dynamics. Through numerical experiments on both synthetic and real-world datasets, FEX demonstrates high accuracy in modeling and predicting disease spread, while uncovering explicit relationships among epidemiological variables. These results highlight FEX as a powerful tool for infectious disease modeling, combining interpretability with strong predictive performance to support practical applications in public health.
- Abstract(参考訳): 感染拡大のモデル化と予測は、公衆衛生の効果的な意思決定に不可欠である。
従来の疫学モデルは、複雑な力学を記述するために専門家が定義したフレームワークに依存しているが、ニューラルネットワークは予測力にも拘わらず、しばしば「ブラックボックス」の性質のために解釈性に欠ける。
本稿では、強化学習を利用した記号学習フレームワークであるFinite Expression Methodを紹介し、疫学のダイナミックスのための明示的な数学的表現を導出する。
合成データセットと実世界のデータセットの両方に関する数値実験を通じて、FEXは疫学変数間の明確な関係を明らかにしながら、疾患の拡散をモデル化し予測する上で高い精度を示す。
これらの結果から、FEXは感染性疾患モデリングの強力なツールであり、解釈可能性と高い予測性能を組み合わせることで、公衆衛生における実践的応用を支援することが示唆された。
関連論文リスト
- Causal Representation Learning from Multimodal Biological Observations [57.00712157758845]
我々は,マルチモーダルデータに対するフレキシブルな識別条件の開発を目指している。
我々は、各潜伏成分の識別可能性を保証するとともに、サブスペース識別結果を事前の作業から拡張する。
我々の重要な理論的要素は、異なるモーダル間の因果関係の構造的空間性である。
論文 参考訳(メタデータ) (2024-11-10T16:40:27Z) - Epidemiology-Aware Neural ODE with Continuous Disease Transmission Graph [14.28921518883576]
持続疾患透過グラフ(EARTH)を用いた疫学対応ニューラル・オードという,革新的なエンドツーエンドフレームワークを提案する。
本稿ではまず,感染メカニズムとニューラルODEアプローチをシームレスに統合するEANOを提案する。
また,グローバルな感染動向をモデル化するためにGLTGを導入し,これらの信号を利用して局所的な感染を動的に誘導する。
論文 参考訳(メタデータ) (2024-09-28T04:07:16Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - Metapopulation Graph Neural Networks: Deep Metapopulation Epidemic
Modeling with Human Mobility [14.587916407752719]
多段階多地域流行予測のための新しいハイブリッドモデルMepoGNNを提案する。
本モデルでは, 確認症例数だけでなく, 疫学的パラメータも明示的に学習できる。
論文 参考訳(メタデータ) (2023-06-26T17:09:43Z) - Approaching epidemiological dynamics of COVID-19 with physics-informed
neural networks [23.95944607153291]
SIRモデルに埋め込まれた物理インフォームドニューラルネットワーク(PINN)は、感染症の時間的進化のダイナミクスを理解するために考案された。
この手法はドイツで報告された新型コロナウイルス(COVID-19)のデータに適用され、ウイルスの拡散傾向を正確に把握し予測できることが示されている。
論文 参考訳(メタデータ) (2023-02-17T10:36:58Z) - Bayesian Networks for the robust and unbiased prediction of depression
and its symptoms utilizing speech and multimodal data [65.28160163774274]
我々は,抑うつ,抑うつ症状,および,胸腺で収集された音声,表情,認知ゲームデータから得られる特徴の関連性を把握するためにベイズ的枠組みを適用した。
論文 参考訳(メタデータ) (2022-11-09T14:48:13Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - An Extended Epidemic Model on Interconnected Networks for COVID-19 to
Explore the Epidemic Dynamics [2.89591830279936]
パンデミックコントロールは、感染した個人の傾向や影響を捉える疫病モデルを必要とする。
多くのエキサイティングなモデルはこれを実装できるが、実践的な解釈性に欠ける。
本研究は疫学とネットワーク理論を融合し,因果解釈能力を持つ枠組みを提案する。
論文 参考訳(メタデータ) (2021-04-10T06:46:01Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
本研究では,疫病データから動的コンパートメンタルモデルの時間変化パラメータを学習するための一般的な手法を提案する。
我々はイタリアとフランスの疫病の進化を予報する。
論文 参考訳(メタデータ) (2020-10-28T10:58:59Z) - OutbreakFlow: Model-based Bayesian inference of disease outbreak
dynamics with invertible neural networks and its application to the COVID-19
pandemics in Germany [0.19791587637442667]
専門的なニューラルネットワークを用いた疫学モデリングの新たな組み合わせを提案する。
我々は, 発生時間, 未検出感染数, 症状発症前の感染可能性, および, 非常に適度な量の実世界の観測による遅延の報告など, 重要な疾患特性に関する信頼性の高い確率推定値を得ることができる。
論文 参考訳(メタデータ) (2020-10-01T11:01:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。