The surface code under generic $X$-error channels: Statistical mechanics, error thresholds, and errorfield double phenomenology
- URL: http://arxiv.org/abs/2412.21055v1
- Date: Mon, 30 Dec 2024 16:14:55 GMT
- Title: The surface code under generic $X$-error channels: Statistical mechanics, error thresholds, and errorfield double phenomenology
- Authors: Jan Behrends, Benjamin Béri,
- Abstract summary: We study the code under the most general single-qubit $X$-error channel, encompassing both coherent and incoherent errors.
We compute maximum-likelihood thresholds and show that error coherence has negligible influence away from the fully coherent limit.
- Score: 0.0
- License:
- Abstract: We study the surface code under the most general single-qubit $X$-error channel, encompassing both coherent and incoherent errors. We develop a statistical mechanics mapping for the decoding problem and represent the partition function as a transfer-matrix, i.e., a (1+1)$D$ hybrid quantum circuit. The relevant circuit evolution, as we show, has an efficient matrix product state approximation, using which we develop an algorithm for large-scale syndrome sampling, thus enabling the simulation of these non-Pauli errors away from the limits captured by previous methods. Using these results, we compute maximum-likelihood thresholds and show that error coherence has negligible influence away from the fully coherent limit. We also study how coherence impacts information-theoretic measures like the coherent information, which we show to require, for accurate threshold estimates, increasingly large codes upon increasing error coherence and to eventually break down in the fully coherent limit. To interpret the dominant effect of incoherent errors in large codes, we develop a phenomenological errorfield double field theory, which indicates the instability of coherent errors' above-threshold quasi-long-range order to the above-threshold disorder characteristic of bit-flip errors and the suppression of coherence in the logical noise channel.
Related papers
- Fundamental thresholds for computational and erasure errors via the coherent information [1.4767596539913115]
We propose a framework based on the coherent information (CI) of the mixed-state density operator associated to noisy QEC codes.
We show how to rigorously derive different families of statistical mechanics mappings for generic stabilizer QEC codes in the presence of both types of errors.
arXiv Detail & Related papers (2024-12-21T18:30:30Z) - Statistical mechanical mapping and maximum-likelihood thresholds for the surface code under generic single-qubit coherent errors [0.0]
We consider single-qubit coherent errors in the surface code, i.e., rotations by angle $alpha$ about an axis that can be chosen arbitrarily.
We numerically establish the existence of an error-correcting phase, which we chart in a subspace of rotation axes to estimate the corresponding maximum-likelihood thresholds.
arXiv Detail & Related papers (2024-10-29T18:23:23Z) - Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
We provide the first proof of convergence for normalized error feedback algorithms across a wide range of machine learning problems.
We show that due to their larger allowable stepsizes, our new normalized error feedback algorithms outperform their non-normalized counterparts on various tasks.
arXiv Detail & Related papers (2024-10-22T10:19:27Z) - On Error Propagation of Diffusion Models [77.91480554418048]
We develop a theoretical framework to mathematically formulate error propagation in the architecture of DMs.
We apply the cumulative error as a regularization term to reduce error propagation.
Our proposed regularization reduces error propagation, significantly improves vanilla DMs, and outperforms previous baselines.
arXiv Detail & Related papers (2023-08-09T15:31:17Z) - Randomized compiling in fault-tolerant quantum computation [0.0]
We present an algorithm projecting the state of the system onto a logical state with a well-defined error.
The algorithm does not significantly increase the depth of the logical circuit.
arXiv Detail & Related papers (2023-06-23T19:17:34Z) - Coherent errors and readout errors in the surface code [0.0]
We consider the combined effect of readout errors and coherent errors on the surface code.
We find a threshold for this combination of errors, with an error rate close to the threshold of the corresponding incoherent error channel.
arXiv Detail & Related papers (2023-03-08T15:50:44Z) - Lattice gauge theory and topological quantum error correction with
quantum deviations in the state preparation and error detection [0.0]
We focus on the topological surface code, and study the case when the code suffers from both noise and coherent noise on the multi-qubit entanglement gates.
We conclude that this type of unavoidable coherent errors could have a fatal impact on the error correction performance.
arXiv Detail & Related papers (2023-01-30T13:12:41Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Predicting Unreliable Predictions by Shattering a Neural Network [145.3823991041987]
Piecewise linear neural networks can be split into subfunctions.
Subfunctions have their own activation pattern, domain, and empirical error.
Empirical error for the full network can be written as an expectation over subfunctions.
arXiv Detail & Related papers (2021-06-15T18:34:41Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.