Exploring and Controlling Diversity in LLM-Agent Conversation
- URL: http://arxiv.org/abs/2412.21102v2
- Date: Fri, 21 Feb 2025 15:48:44 GMT
- Title: Exploring and Controlling Diversity in LLM-Agent Conversation
- Authors: KuanChao Chu, Yi-Pei Chen, Hideki Nakayama,
- Abstract summary: We propose Adaptive Prompt Pruning (APP), a novel method that allows users to control diversity through a single parameter.<n>APP effectively controls output diversity through extensive experiments, and propose a method to balance the control trade-offs.
- Score: 17.38671584773247
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Controlling diversity in LLM-agent world simulations is essential for maintaining stability in structured tasks while enabling variation where creativity is needed. However, we observe that dialogue diversity declines significantly over long-term simulation. To investigate the role of prompt design in conversational diversity, we modularized the utterance generation prompt and found that reducing the given information leads to more diverse outputs. Based on this insight, we propose Adaptive Prompt Pruning (APP), a novel method that allows users to control diversity through a single parameter, lambda. APP dynamically prunes the utterance generation prompt based on their attention weights and is compatible with traditional diversity control techniques. We demonstrate that APP effectively controls output diversity through extensive experiments, and propose a method to balance the control trade-offs. Additionally, we provide an in-depth analysis to offer insights into optimizing diversity control in multi-agent simulation.
Related papers
- Evaluating the Diversity and Quality of LLM Generated Content [72.84945252821908]
We introduce a framework for measuring effective semantic diversity--diversity among outputs that meet quality thresholds.
Although preference-tuned models exhibit reduced lexical and syntactic diversity, they produce greater effective semantic diversity than SFT or base models.
These findings have important implications for applications that require diverse yet high-quality outputs.
arXiv Detail & Related papers (2025-04-16T23:02:23Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
Multi-step multimodal reasoning tasks pose significant challenges for large language models (MLLMs)
We propose AR-MCTS, a universal framework designed to progressively improve the reasoning capabilities of MLLMs.
We show that AR-MCTS can optimize sampling diversity and accuracy, yielding reliable multimodal reasoning.
arXiv Detail & Related papers (2024-12-19T13:25:39Z) - Multi-trait User Simulation with Adaptive Decoding for Conversational Task Assistants [11.092533523906834]
This paper introduces Multi-Trait Adaptive Decoding (mTAD), a method that generates diverse user profiles at decoding-time.
By analyzing real-world dialogues from the Conversational Task Assistant domain, we identify key conversational traits.
We develop a framework to generate profile-aware dialogues that enhance conversational diversity.
arXiv Detail & Related papers (2024-10-16T09:40:34Z) - GANPrompt: Enhancing Robustness in LLM-Based Recommendations with GAN-Enhanced Diversity Prompts [15.920623515602038]
Large Language Models (LLMs) are highly susceptible to the influence of prompt words.
This paper proposes GANPrompt, a multi-dimensional LLMs prompt diversity framework based on Generative Adversarial Networks (GANs)
The framework enhances the model's adaptability and stability to diverse prompts by integrating GANs generation techniques with the deep semantic understanding capabilities of LLMs.
arXiv Detail & Related papers (2024-08-19T03:13:20Z) - Very Large-Scale Multi-Agent Simulation in AgentScope [112.98986800070581]
We develop new features and components for AgentScope, a user-friendly multi-agent platform.
We propose an actor-based distributed mechanism towards great scalability and high efficiency.
We also provide a web-based interface for conveniently monitoring and managing a large number of agents.
arXiv Detail & Related papers (2024-07-25T05:50:46Z) - Enhancing LLM-Based Human-Robot Interaction with Nuances for Diversity Awareness [0.0]
This paper presents a system for diversity-aware autonomous conversation leveraging the capabilities of large language models (LLMs)
The system adapts to diverse populations and individuals, considering factors like background, personality, age, gender, and culture.
To assess the system's performance, we conducted both controlled and real-world experiments, measuring a wide range of performance indicators.
arXiv Detail & Related papers (2024-06-25T13:15:36Z) - Controlling Behavioral Diversity in Multi-Agent Reinforcement Learning [8.905920197601173]
We introduce Diversity Control (DiCo), a method able to control diversity to an exact value of a given metric.
We show how DiCo can be employed as a novel paradigm to increase performance and sample efficiency in Multi-Agent Reinforcement Learning.
arXiv Detail & Related papers (2024-05-23T21:03:33Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications.
MoE has been emerged as a promising solution with its sparse architecture for effective task decoupling.
Intuition-MoR1E achieves superior efficiency and 2.15% overall accuracy improvement across 14 public datasets.
arXiv Detail & Related papers (2024-04-13T12:14:58Z) - Meta-Task Prompting Elicits Embeddings from Large Language Models [54.757445048329735]
We introduce a new unsupervised text embedding method, Meta-Task Prompting with Explicit One-Word Limitation.
We generate high-quality sentence embeddings from Large Language Models without the need for model fine-tuning.
Our findings suggest a new scaling law, offering a versatile and resource-efficient approach for embedding generation across diverse scenarios.
arXiv Detail & Related papers (2024-02-28T16:35:52Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
Multimodal entity linking task aims at resolving ambiguous mentions to a multimodal knowledge graph.
We propose a novel Multi-GraIned Multimodal InteraCtion Network $textbf(MIMIC)$ framework for solving the MEL task.
arXiv Detail & Related papers (2023-07-19T02:11:19Z) - Representation Online Matters: Practical End-to-End Diversification in
Search and Recommender Systems [8.296711988456762]
We introduce end-to-end diversification to improve representation in search results and recommendations.
We develop, experiment, and deploy scalable diversification mechanisms on the Pinterest platform.
Our approaches significantly improve diversity metrics, with a neutral to a positive impact on utility metrics and improved user satisfaction.
arXiv Detail & Related papers (2023-05-24T19:43:26Z) - Policy Diagnosis via Measuring Role Diversity in Cooperative Multi-agent
RL [107.58821842920393]
We quantify the agent's behavior difference and build its relationship with the policy performance via bf Role Diversity
We find that the error bound in MARL can be decomposed into three parts that have a strong relation to the role diversity.
The decomposed factors can significantly impact policy optimization on three popular directions.
arXiv Detail & Related papers (2022-06-01T04:58:52Z) - High-Modality Multimodal Transformer: Quantifying Modality & Interaction
Heterogeneity for High-Modality Representation Learning [112.51498431119616]
This paper studies efficient representation learning for high-modality scenarios involving a large set of diverse modalities.
A single model, HighMMT, scales up to 10 modalities (text, image, audio, video, sensors, proprioception, speech, time-series, sets, and tables) and 15 tasks from 5 research areas.
arXiv Detail & Related papers (2022-03-02T18:56:20Z) - High-Quality Diversification for Task-Oriented Dialogue Systems [18.455916009255485]
Training DRL agents with diverse dialogue trajectories prepare them well for rare user requests and unseen situations.
One effective diversification method is to let the agent interact with a diverse set of learned user models.
We propose a novel dialogue diversification method for task-oriented dialogue systems trained in simulators.
arXiv Detail & Related papers (2021-06-02T02:10:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.